- 1. (15 pts) Let $f(x, y, z) = \sin(xy + z)$, and P be the point $(0, -2, \frac{\pi}{3})$.
 - (a) (6 pts) Compute $\nabla f(x, y, z)$.
 - (b) (2 pts) At P, find the direction along which f obtains maximum directional derivative.
 - (c) (4 pts) Calculate the directional derivative $\frac{\partial f}{\partial \mathbf{u}}(P)$, where **u** is a unit vector making an angle $\frac{\pi}{6}$ with the gradient $\nabla f(P)$.
 - (d) (3 pts) The level surface $f(x, y, z) = \frac{\sqrt{3}}{2}$ defines z implicitly as a function of x and y near P. Compute $\frac{\partial z}{\partial x}$ at P.
- 2. (12 pts) Assume that f(x, y, z) and g(x, y, z) have continuous partial derivatives and (1, 2, -1) lies on the level surface f(x, y, z) = 3. Suppose the tangent plane of f(x, y, z) = 3 at (1, 2, -1) is 2x y + 3z + 3 = 0 and $f_y(1, 2, -1) = 2$.
 - (a) (4 pts) Find $\nabla f(1, 2, -1)$.
 - (b) (4 pts) Estimate f(1.1, 2.01, -0.98) by the linear approximation of f at (1, 2, -1).
 - (c) (4 pts) Suppose that when restricted on the surface f(x, y, z) = 3, g(x, y, z) obtains maximum value at (1, 2, -1) and $g_x(1, 2, -1) = -2$. Find $\nabla g(1, 2, -1)$ and the maximum directional derivative of g at the point (1, 2, -1).
- 3. (25 pts) $f(x,y) = x^2 + xy + y^2 + 3x$.
 - (a) (7 pts) Find critical point(s) of f(x, y) and determine whether it is a saddle point or f(x, y) obtains local maximum or local minimum at it.
 - (b) (15 pts) Find the maximum and minimum value of f(x, y) on the curve $x^2 + y^2 = 9$ by the method of Lagrange multiplies.
 - (c) (3 pts) Find the maximum value of f(x, y) on the region $x^2 + y^2 \le 9$.
- 4. (18 pts) (a) (8 pts) Reverse the order of integration and evaluate it. $\int_0^4 \int_{\frac{\sqrt{y}}{2}}^{\frac{1}{\sqrt{x^3+3}}} dx \, dy.$
 - (b) (10 pts) Compute $\iint_{\Omega} (\ln y)^{-1} dA$, where Ω is bounded by $y = e^x$ and $y = e^{\sqrt{x}}$.

5. (18 pts) (a) (8 pts) Evaluate $\iint_{D} e^{-x^2-y^2} dA$, where D is the upper disc, $x^2 + y^2 \le 25$ and $y \ge 0$.

(b) (10 pts) Calculate the area of the region inside the cardioid

$$r = 1 - \sin \theta.$$

6. (12 pts) Evaluate $\iint_{D} e^{xy} dxdy$, where *D* is bounded by curves xy = 10, xy = 20, $x^2y = 20$ and $x^2y = 40$.

