1. Compute the integrals.

(a) (6%)
$$\int x(\sin 2x + \cos x) dx.$$
 (b) (9%) $\int \frac{8x - 4}{x^2(x^2 + 4)} dx$

- 2. (a) (3%) Evaluate and simplify $\frac{d}{dx} \ln \left(\sqrt{x^2 + 1} + x \right)$.
 - (b) (5%) Evaluate $\int \sec x \, dx$. (c) (7%) Use (b) and trigonometric substitution to find $\int_0^1 \frac{1}{\sqrt{x^2+1}} \, dx$.
 - (d) (7%) Use (a) and integration by parts to evaluate the integral $\int_0^1 \ln\left(\sqrt{x^2+1}+x\right) dx$.
- 3. (a) (10%) Let R be the region bounded by $y = \cos x$, $y = \sin 2x$ and x = 0 in the first quadrant. Rotate R about the x-axis. Find the volume of the resulting solid.

(b) (6%) (A) $\int_0^1 \pi x \, dx$. (B) $\int_0^1 \pi x^4 \, dx$. (C) $\int_0^1 \pi x^2 \, dx$. (D) $\int_0^1 x^2 \, dx$. Match each solid with the integral that represents its volume.

Integrals	А	В	С	D
Solid				

4. (8%) Find the length of the curve

$$y = f(x) = \int_{1}^{x} \sqrt{t^3 - 1} \, dt, \quad 1 \le x \le 4.$$

- 5. Let $f(x) = xe^x$. (When finding the following Taylor series, you don't need to specify the range of x for which the series equals the function.)
 - (a) (4%) Find the Taylor series for f(x) at x = 0.
 - (b) (7%) Calculate $\int_0^x te^t dt$ and find its Taylor series at x = 0. (c) (4%) Find the sum $\sum_{n=0}^{\infty} \frac{1}{n!(n+2)}$.
- 6. (a) (6%) Find the Taylor series for $f(x) = \ln(1-x^2)$, $g(x) = \cos x 1$, and $h(x) = \sin(2x^4)$ at x = 0. (You don't need to specify the range of x for which the function equals its Taylor series.)

(b) (4%) Evaluate
$$\lim_{x\to 0} \frac{(\cos x - 1)\ln(1 - x^2)}{\sin(2x^4)}$$
.
7. (a) (6%) Compute $\lim_{x\to 0} \frac{\int_0^{4x^2} \cos(\sqrt{t})dt}{x^2}$ by L'Hospital's Rule.
(b) (8%) Compute $\lim_{x\to\infty} (1+x)^{1/\ln x}$.