
- 1. (10%) Let $F(x) = \int_0^{x^2} \cos(t^2 + t) dt$. (a) (6%) Compute F'(x).
 - (b) (4%) Compute the limit $\lim_{x \to 0} \frac{F(x)}{x^2}$.
- 2. (14%) Compute the integrals.

(a) (7%)
$$\int \sin \sqrt{2x+1} \, dx$$
 (b) (7%) $\int \tan^{-1} \left(\frac{2}{x}\right) \, dx$

3. (18%) Compute the integrals.

(a) (9%)
$$\int \frac{1}{x^2\sqrt{1+x^2}} dx$$
 (b) (9%) $\int \frac{x^2+4x-1}{x^4-1} dx$

4. (18%) For a constant a > 0, Ω_a is the region bounded by $y = \frac{x}{x+1}$, x = a and the x-axis. Σ_a is the region bounded by $y = \frac{x}{x+1}$, $y = \frac{a}{a+1}$ and the y-axis. (Ω_a and Σ_a together make a rectangle as shown in the Figure.) Rotate Ω_a about the x-axis and let the resulting volume be U(a). Rotate Σ_a about the y-axis and let the resulting volume be V(a).

- (a) (8%) Find U(a).
- (b) (8%) Find V(a).
- (c) (2%) Find U(a) V(a).

5. (12%) Find the following limits.

(a) (6%)
$$\lim_{x \to 0} \frac{\cos x^2 - 1}{\sin x^4}$$
 (b) (6%) $\lim_{x \to 1} \left(\frac{2}{x^2 - 1} - \frac{1}{\ln x} \right)$

6. (a) (4%) Write down the Taylor series of $\frac{-1}{\sqrt{1-x^2}}$ at x = 0.

- (b) (6%) Find the Taylor series of $\cos^{-1} x$ at x = 0.
- (c) (4%) Write down the 10th-degree Taylor polynomial, $P_{10}(x)$, of $\cos^{-1}(x^2)$ at x = 0.

(Note that you need to compute the exact values of coefficients for part (c). Do not express coefficients in terms of C_n^{α} only.)

- 7. (14%) Suppose that $f(x) = \frac{1}{2}x^2 + \frac{1}{3 \cdot 2}x^3 + \dots + \frac{1}{n(n-1)}x^n + \dots$, for |x| < 1.
 - (a) (2%) Find $f^{(10)}(0)$
 - (b) (6%) Find the Taylor series of f'(x) and f''(x) at x = 0. Recognize them as elementary functions.
 - (c) (6%) Express f(x) as an elementary function.