1. (14%) Find the following limits.

(a) (7%)
$$\lim_{x \to 0} \frac{x \sin x}{1 - \cos x}$$
.
(b) (7%) $\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^{3x}$. (Hint: $\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$)

- 2. (14%) Find the first derivative of the following functions.
 - (a) $(7\%) f(x) = \tan(2^x)$. (b) $(7\%) f(x) = (\sin x)^x$.

3. (12%) Given $\tan^{-1}\frac{y}{x} = 2xy - 2y^2 + \frac{\pi}{4}$, find the first derivative and the second derivative, $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ at (1,1).

4. (8%) Estimate $\sqrt[4]{10004}$ by a linear approximation.

5. (8%) Show that $-\ln(1-x) > x + \frac{1}{2}x^2$ for 0 < x < 1.

- 6. (14%) As in the picture, consider a trapezoid inscribed in the unit circle such that one base is the diameter.
 - (a) (4%) Describe the area of the trapezoid as a function of θ . Denote this function by $f(\theta)$.
 - (b) (7%) Find critical numbers of $f(\theta)$ for $0 < \theta < \frac{\pi}{2}$.
 - (c) (3%) Find the absolute maximum value of $f(\theta)$ for $0 \le \theta \le \frac{\pi}{2}$.
- 7. (14%) Let $y = f(x) = \sqrt{4x^2 + x}$, for $x \le -\frac{1}{4}$ or $x \ge 0$. Find slant asymptotes of y = f(x).
- 8. (16%) Consider $f(x) = 3\ln(x^2 1) 4x$.
 - (a) The domain of f(x) is _____.
 (b) f'(x) = _____. f(x) is increasing on _____. (intervals).

 - f(x) is decreasing on _____ (intervals).
 - (c) f''(x) =_____.
 - f(x) is concave upward on _____ (intervals, if any).
 - f(x) is concave downward on _____ (intervals, if any).
 - (d) At x =_____, f(x) has local maximum value _____. (If there is any local maximum value.)

At x =_____, f(x) has local minimum value _____. (If there is any local minimum value.)

- (e) Find vertical asymptotes of y = f(x).
- (f) Draw the graph of y = f(x).