- 1. (15%)
 - (a) (5%) State the fundamental theorem of calculus.
 - (b) (10%) A function f(x) satisfies

$$\int_0^x f(t)dt = \int_x^1 t^2 f(t)dt + \frac{x^{16}}{8} + \frac{x^{18}}{9} + C \quad \text{for all } x$$

where C is a constant. Find the function f(x) and the constant C.

2. (7%) Evaluate
$$\lim_{x \to \infty} \frac{\ln(1+x)}{\ln(1+x^2)}$$

- 3. (7%) Evaluate $\lim_{x \to 0} \left(\frac{1}{x^2} \frac{1}{\sin^2 x} \right)$.
- 4. (14%)
 - (a) (7%) Derive the Taylor expansion of $\tan^{-1} x$ centered at x = 0. (The expression of the *n*-th term for general $n \ge 0$ is required.)

(b) (7%) Find
$$\lim_{x \to 0} \frac{3 \tan^{-1} x - 3x + x^3}{3x^5}$$
.

5. (14%) Evaluate the following two indefinite integrals.

(a) (7%)
$$\int x \sin^{-1} x dx$$
.
(b) (7%) $\int \frac{\ln x}{x \ln x + x} dx$.

- 6. (6%) Find the *n*-th term of the Taylor expansions of $sin(x^2)$ centered at x = 0 for general $n \ge 0$. (You may use the Taylor expansions of cos x and sin x without deriving them.)
- 7. (7%) Find the *n*-th term of the Taylor expansion of $\sin^2 x$ centered at x = 0 for general $n \ge 0$. (You may use the Taylor expansions of $\cos x$ and $\sin x$ without deriving them.)
- 8. (10%) Find the arc length of the curve $y = \ln \sec x$ for $0 \le x \le \frac{\pi}{4}$. (You can use any integral formulas you know without deriving them.)
- 9. (20%) Let Ω be the region bounded by $y = \frac{1}{x(3-x)}$, x = 1, x = 2 and x-axis.
 - (a) (7%) Find the area of Ω .
 - (b) (7%) Find the volume of the solid obtained by rotating Ω about the x-axis.
 - (c) (6%) Find the volume of the solid obtained by rotating Ω about the *y*-axis.