- 1. (10%) Solve the differential equation $y' = y(y^2 1)$, where y is not a constant function.
- 2. (10%) Find the particular solution of $x \frac{dy}{dx} = 2y + x^3 \ln x, x > 0$, satisfying y(1) = -1.
- 3. (15%) Assume the range I_X of a random variable X is {-1,0,1}. Let E(X) = 0 and Var(X) = ²/₃. Find
 (a) (4%+4%) P(X = 1) and P(X = 0)
 - (b) (7%) $Var(X^2)$.
- 4. (10%) If $X_i \sim X$ for all $i = 1, 2, \dots, 10$ and $\{X_1, X_2, \dots, X_{10}\}$ is a set of independent random variable. Assume E(X) = 1 and Var(X) = 2. Find
 - (a) (5%) $E(5X_1 \cdot X_2 \cdot \dots \cdot X_{10})$

(b) (5%)
$$\operatorname{Var}\left(\frac{X_1 + X_2 + X_{10}}{10}\right)$$

5. (10%) Compute the integral: $\int_{-\infty}^{\infty} (2x+1)e^{-x^2+6x} dx.$ (You can use the result $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$)

6. (15%) Let X, Y be two independent random variables with density function $f_X(t) = f_Y(t) = \begin{cases} te^{-t}, & t > 0 \\ 0, & t \le 0. \end{cases}$

- (a) (8%) Let Z = X + Y. Find $f_Z(t)$.
- (b) (7%) Let $W = X^2$. Find $f_W(t)$.
- 7. (15%) (5%+5%+5%) Let X be a random variable with density function $f_X(t) = 3e^{-3t}$. Find (a) $P(1 \le X \le 2)$, (b) E(X) and (c) Var(X).
- 8. (15%) Calls arrive to a cell in a certain wireless communication system according to a Poisson process with arrival rate 120 calls per hour. Find the following probabilities:
 - (a) (7%) The first call arrives after time t = 3.5.
 - (b) (8%) Two or fewer calls arrive in the first 3.5 minutes.