- 1. (10%) Solve the differential equation $\begin{cases} y' + (\tan t) \ y = t \sin 2t, \ \frac{-\pi}{2} < t < \frac{\pi}{2}, \\ y(0) = 1. \end{cases}$
- 2. (15%) Solve the differential equation $\frac{dy}{dx} = e^y \sin x$.
- 3. (10%) A chemical reaction invloves the collision of one molecule of a substance P with one molecule of a substance Q to produce one molecule of a new substance X. This is $P+Q\rightarrow X$. If $p, q, (p \neq q)$ are the initial concentrations of P and Q, respectively, and let x(t) be the concentration of X at time t. Then p x(t) and q x(t) are the concentrations of P and Q at time t, respectively. The reaction is given by the equation

$$\frac{dx}{dt} = \alpha \left(p - x \right) \left(q - x \right),$$

where α is a positive constant. If x(0) = 0, solve x(t).

- 4. (10%) Let X be a random variable, taking values in $\{1,2\}$. Let $E(X) = \frac{5}{3}$.
 - (a) (5%) Find P(X = 1) and P(X = 2).
 - (b) (5%) Evaluate Var(X).
- 5. (10%) Evaluate $\int_{-\infty}^{\infty} e^{-x^2+2bx+c} dx$, $b, c \in \mathbb{R}$. (You can use $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$.)
- 6. (10%) Let X, Y be random variables such that $f_X(t) = e^{-t}, t \ge 0$ and Y = 2X + 1. Find $f_Y(t)$.
- 7. (10%) Let X, Y be two independent random variables both with the probability density $f_X(t) = f_Y(t) = \frac{1}{\sqrt{\pi}}e^{-t^2}$, $t \in \mathbb{R}$. Find the probability density function $f_W(t)$ of the random variable $W = (X + Y)^2$.
- 8. (10%) The average number of phone calls is 20 per hour. Find the probability for the event of at least one phone call within an interval of 3 minutes. (Assume the validity of Poisson process for this case.)
- 9. (15%) Let X be the random variable for the duration of telephone calls within a certain city with the probability density function

$$f_X(t) = \frac{2}{5}e^{-\frac{2t}{5}}, \ t > 0$$

where t denotes the duration in minutes of a randomly selected call.

- (a) (4%) What percentage of calls last one minute or less ?
- (b) (4%) What percentage of calls last between one and two minutes ?
- (c) (4%) What percentage of calls last 3 minutes or more ?
- (d) (3%) What is the average length of a call ?