- 1. (15%) Let $f(x) = \int_{x}^{x^{2}} \frac{1}{1+t^{4}} dt$ and $F(x) = xe^{f(x)}$. (a) (10%) Evaluate f'(x).
 - (b) (5%) Evaluate F'(1).
- 2. (15%) Let $F(x) = \int_0^x e^{-t^2} dt$. Derive the Taylor expansion of F(x) at x = 0 and write down the explicit form of the general term.
- 3. (10%) Find the integral: $\int_{-1}^{0} \frac{x}{\sqrt{3-2x-x^2}} dx.$
- 4. (15%) Find the integral: $\int_{1}^{2} \frac{x^4 + x^2 1}{x^3 + x} dx.$
- 5. (10%) Find $\lim_{x \to \infty} \left(1 + \sin \frac{3}{x} \right)^x$.
- 6. (10%) Find the area of the bounded region enclosed by $x^4 x^2 y^2 = 0$ and x = 2.
- 7. (15%) Let R be the region enclosed by $y = \cos\left(\frac{\pi}{2}x\right)$, y = 0 and $0 \le x \le 1$.
 - (a) (8%) Find the volume of the solid obtained by rotating R with respect to x-axis.
 - (b) (7%) Find the volume of the solid obtained by rotating R with respect to y-axis.
- 8. (10%) Find the length of the curve $y = \frac{e^x + e^{-x}}{2}$ from x = -1 to x = 1.