- 1. (14%) Find the maximum and the minimum of f(x, y) = xy subject to the constraint $x^2 + xy + y^2 = 1$.
- 2. (12%) Let $f(x,y) = x^3 3\lambda xy + y^3$, where $\lambda \neq 0$ is a real number. Find all the critical points of f. Determine which give rise to local maxima, local minima, saddle points. (Note: It depends on the value of λ .)
- 3. (12%) Evaluate $\iint_{\Omega} \frac{x^2}{x^2 + y^2} dA$, where Ω is the region $1 \le x^2 + y^2 \le 2$. 4. (12%) Evaluate $\iint_{\Omega} (y-x)(2x+y)dA$, where Ω is the region enclosed by y-x = 1, y-x = 2, 2x+y = 0,
- 5. (12%) Let f(x,y) be differentiable. Suppose that $\frac{\partial f}{\partial x}(2,-2) = \sqrt{2}$, and $\frac{\partial f}{\partial y}(2,-2) = \sqrt{5}$. Let x = u v and y = v u. Find the value of $\frac{\partial f}{\partial u} + \frac{\partial f}{\partial v}$ at (u,v) = (1,-1).
- 6. (14%) Let $f(x, y) = e^x \cos y + a \sin y$, where a is a constant.

and 2x + y = 2.

- (a) (7%) Find an equation of the tangent plane to the level curve f(x, y) = -1 at the point $(0, \pi)$. (The equation may contain a.)
- (b) (7%) Suppose the maximum of the directional derivative $\frac{\partial f}{\partial \vec{u}}(0,0)$ occur at $\vec{u} = \left(\frac{3}{5}, \frac{4}{5}\right)$, find the value of a.

7. (12%) Evaluate
$$\iint_{\Omega} \frac{3x^2}{(x^3+y^2)^2} dA$$
, where $\Omega = [0,1] \times [1,3]$.
8. (12%) Evaluate $\iint_{R} \frac{xe^y}{y} dA$, where $R: 0 \le x \le 1$ and $x^2 \le y \le x$.