
1. (15%) Set
$$I_n = \int (\ln x)^n dx$$
, $n \ge 1$.
(a) (6%) Find I_1 .
(b) (6%) Express I_{n+1} in terms of I_n .
(c) (3%) Use (b) to find I_4 .
2. (12%) (a) (6%) Find $\int \frac{x+1}{x^2+x+1} dx$.
(b) (6%) Find $\int \frac{dx}{e^x(e^{2x}-1)}$.
3. (12%) (a) (6%) Evaluate $\int_0^{\frac{1}{2}} x^2 \sqrt{1-x^2} dx$.
(b) (6%) Find $\frac{d}{dx} \int_x^{x^2} \frac{dt}{1+t^5}$.
4. (12%) (a) (6%) Evaluate $\int \sec^3 \theta d\theta$. You can use the formula for $\int \sec \theta d\theta$ if you know it.

(b) (6%) Find the arc length of the curve $y = \frac{x^2}{2} + 1$ from x = 0 to x = 2.

- 5. (10%) Find the volume of the solid obtained by rotating about the y-axis the region bounded by x = 0, x = 1, y = 0, and $y = \sqrt{x^2 + 1}$.
- 6. (15%)
 - (a) (8%) Write down the fourth degree Taylor polynomial of $f(x) = \sin x$ at x = 0. Also, write down its remainder provided by Taylor's Theorem.
 - (b) (7%) Find the numerical value of $\sin 20^{\circ}$ accurate to within 10^{-4} . Your answer can be expressed in terms of π . Don't have to bother replacing π by $3.14\cdots$. But the remainder must be estimated in details to prove the asserted accuracy of your numerical value.

7. (12%) (a) (6%) Find
$$\lim_{x \to \infty} x^{\frac{1}{x}}$$
.
(b) (6%) Find $\lim_{x \to 0} \frac{\ln(1+x^2)}{1-\cos x}$.

8. (12%) A rod is being carried horizontally down a hallway of 1m wide with a right-angled turn. What is the maximal length of the rod that can be carried around the corner?

