1. (14%) Determine whether the following limits exist. If the limit exists, evaluate it. If the limit does not exist, explain why?

(a) $\lim_{x \to 0} \left(\sin^{-1} x \right) \left(\sin \frac{1}{x} \right) = \underline{\qquad}$

(b) $\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right) = \underline{\hspace{1cm}}$

Sol:

(a) Since $\left|\sin\frac{1}{x}\right| \le 1, \ \forall x \ne 0, \ (2\%)$

we have

$$-\left|\sin^{-1} x\right| \le (\sin^{-1} x)(\sin\frac{1}{x}) \le \left|\sin^{-1} x\right|, \ \forall x \ne 0. \ (2\%)$$

(missing absolute values: 1%)

Also,
$$\lim_{x\to 0} \left| \sin^{-1} x \right| = \sin^{-1}(0) = 0.$$
 (2%)

By the squeeze theorem, the limit exists and equals 0. (1%)

(b) Apply l'Hôpital's rule,

$$\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x} \right) = \lim_{x \to 1} \frac{x \ln x - (x-1)}{(x-1) \ln x}$$

$$= \lim_{x \to 1} \frac{\ln x}{\ln x + 1 - \frac{1}{x}}$$

$$= \lim_{x \to 1} \frac{\frac{1}{x}}{\frac{1}{x} + \frac{1}{x^2}} = \frac{1}{2}$$

Note: Correctly using l'Hôpital's rule (2%), differentiation calculation (2%), the limit value (3%).

- 2. (12%) Let $f(x) = \begin{cases} \frac{\sin^2 ax}{x}, & x > 0 \\ |2x+1| |2x-1| + b\cos x, & x \le 0, \end{cases}$ where a, b are constants.
 - (a) For what values of a and b is f(x) continuous at x = 0?

Answer: a: ______, b: ______

(b) For what values of a and b is f(x) differentiable at x = 0?

Answer: a: _______, b: _______

Sol:

(a) f is continuous at x = 0

$$\Rightarrow \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{-}} f(x) = f(0) \qquad (1\%)$$

$$\Rightarrow \lim_{x \to 0^{+}} \frac{\sin^{2} ax}{x} = \lim_{x \to 0^{-}} |2x + 1| - |2x - 1| + b \cos x = 1 - 1 + b \cos 0 \qquad (1\%)$$

If $a \neq 0$

$$\Rightarrow \lim_{x \to 0^{+}} a^{2}x \left(\frac{\sin ax}{ax}\right)^{2} = \lim_{x \to 0^{-}} (2x+1) - (1-2x) + b\cos x = b \qquad (2\%)$$

$$\Rightarrow 0 \cdot 1^{2} = b = b \quad \Rightarrow b = 0$$

If $a = 0 \Rightarrow f(x) = 0$ for x > 0 (1%)

$$\Rightarrow \lim_{x \to 0^+} 0 = b \ \Rightarrow \ b = 0$$

$$\Rightarrow a \in \mathbb{R}, \quad b = 0$$
 (1%)

(b) f is differentiable at 0

$$\Rightarrow$$
 f is continuous at 0 and, by (a), $b = 0$, $f(0) = 0$ (1%)

(or you may try another way to get this credit)

And by definition

$$\Rightarrow \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x}$$
 (1%)

$$\Rightarrow \lim_{x \to 0^{+}} \frac{\sin^{2} ax}{x^{2}} = \lim_{x \to 0^{-}} \frac{|2x+1| - |2x-1|}{x}$$
 (1%)

If $a \neq 0$

$$\Rightarrow \lim_{x \to 0^{+}} a^{2} \left(\frac{\sin ax}{ax} \right)^{2} = \lim_{x \to 0^{-}} \frac{4x}{x}$$
 (1%)
$$\Rightarrow a^{2} \cdot 1^{2} = 4 \Rightarrow a = \pm 2$$
 (1%)

If
$$a = 0 \implies f(x) = 0 \text{ for } x > 0$$
 (1%)

$$\Rightarrow \lim_{x \to 0^+} 0 = 4 \quad \rightarrow \leftarrow$$

$$\Rightarrow a = \pm 2, \quad b = 0$$

3. (8%) The equation of the tangent line of the curve $\sin^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(xy\right)$ at $\left(\sqrt{2}, \frac{\sqrt{6}}{2}\right)$

S _____

Sol:

$$\sin^{-1}(\frac{y}{x}) = \tan^{-1} xy$$

Implicit differentiation
$$\Rightarrow \frac{1}{\sqrt{1-(\frac{y}{x})^2}} \cdot \frac{x \cdot y' - y \cdot 1}{x^2} = \frac{1}{1+(xy)^2} \cdot (1 \cdot y + x \cdot y')$$

Let
$$(x,y) = (\sqrt{2}, \frac{\sqrt{6}}{2}) \implies \frac{1}{\sqrt{1 - (\frac{\sqrt{3}}{2})^2}} \cdot \frac{\sqrt{2}y' - \frac{\sqrt{6}}{2}}{2} = \frac{1}{1 + (\sqrt{3})^2} \cdot (\frac{\sqrt{6}}{2} + \sqrt{2}y')$$

$$\Rightarrow y' = \frac{5\sqrt{3}}{6} = \text{slope at } (\sqrt{2}, \frac{\sqrt{6}}{2})$$

$$\Rightarrow$$
 The tangent line : $y - \frac{\sqrt{6}}{2} = \frac{5\sqrt{3}}{6}(x - \sqrt{2})$ (or $5\sqrt{3}x - 6y = 2\sqrt{6}$)

5 points for the implicit differentiation.

2 points for the computation of $y' = \frac{5\sqrt{3}}{6}$.

1 point for the equation of the tangent line.

4. (8%) Let f be a continuous function satisfying

$$\int_0^x f(t) dt + \int_0^{x^3} e^{-t} f(\sqrt[3]{t}) dt = xe^{2x} + \pi^x + x^\pi \text{ for all } x > 0.$$

The explicit formula for f(x) is _

Sol

$$\int_0^x f(t)dt + \int_0^{x^3} e^{-t} f(\sqrt[3]{t})dt = xe^{2x} + \pi^x + x^\pi, \ x > 0$$

Differentiate both side $\Rightarrow f(x) + e^{-x^3} f(\sqrt[3]{x^3}) \cdot 3x^2 = e^{2x} + xe^{2x} \cdot 2 + \pi^x \cdot \ln x + \pi x^{\pi-1}$

$$\Rightarrow f(x)(1+3x^2e^{-x^3}) = (1+2x)e^{2x} + \pi^x \ln x + \pi x^{\pi-1}$$

$$\Rightarrow f(x) = \frac{(1+2x)e^{2x} + \pi^x \ln x + \pi x^{\pi-1}}{1 + 3x^2 e^{-x^3}}$$

1 point for
$$\frac{d}{dx} \int_0^x f(t)dt = f(x)$$
.

2 points for
$$\frac{d}{dx} \int_0^{x^3} e^{-t} f(\sqrt[3]{t}) dt = e^{-x^3} f(\sqrt[3]{x^3}) \cdot 3x^2 = 3x^2 e^{-x^3} f(x).$$

1 point for
$$\frac{d}{dx}xe^{2x} = (1+2x)e^{2x}$$
.

3 points for
$$\frac{d}{dx}(\pi^x + x^\pi) = \pi^x \ln x + \pi x^{\pi-1}$$
.

1 point for the final answer
$$f(x) = \frac{(1+2x)e^{2x} + \pi^x \ln x + \pi x^{\pi-1}}{1 + 3x^2 e^{-x^3}}$$
.

5. (12%) (a)
$$\int \frac{\cos(\ln x)}{x} dx =$$

(b) Let
$$f(x) = \begin{cases} \frac{1}{1+x^2}, & -1 \le x \le 0\\ \sec^2 x, & 0 < x \le 1. \end{cases}$$

Then $\int_{-1}^1 f(x) \, dx = \underline{\hspace{1cm}}$

Sol:

(a) Let
$$u = \ln x \Rightarrow du = \frac{1}{x} dx$$
, (2%)
then $\int \frac{\cos(\ln x)}{x} dx = \int \cos u du = \sin u + C = \sin(\ln x) + C$, C is a constant. (2%)

(b) Since
$$\int_{-1}^{1} f(x)dx = \int_{-1}^{0} f(x)dx + \int_{0}^{1} f(x)dx$$

$$\int_{-1}^{0} f(x)dx = \int_{-1}^{0} \frac{1}{1+x^{2}}dx = \tan^{-1}x \Big|_{-1}^{0} (2\%) = \tan^{-1}0 - \tan^{-1}(-1) = 0 - \frac{-\pi}{4} = \frac{\pi}{4} \quad (2\%)$$

and

$$\int_0^1 f(x)dx = \int_0^1 \sec^2 x dx = \tan x \Big|_0^1 (2\%) = \tan 1 - \tan 0 = \tan 1 - 0 = \tan 1. \quad (2\%)$$
Therefore,
$$\int_0^1 f(x)dx = \frac{\pi}{4} + \tan 1.$$

6. (14%) Two different methods are applied to estimate $\ln(1.2)$ as follows.

(a) The linear approximation of $\ln x$ at x=1 is ______ Use this to estimate $\ln (1.2)$.

Answer: $\ln(1.2) \approx$ ______ by linear approximation.

- (b) Apply Mean Value Theorem to show that $\frac{1}{1+x} < \frac{\ln(1+x)}{x} < 1$ for x > 0.
- (c) Use the result in (b) to find an interval in which $\ln(1.2)$ is located. Then use the midpoint of this interval to estimate $\ln(1.2)$.

Answer: $\ln (1.2) \approx$ ______ by mean value theorem.

Sol:

(a) (1)
$$L[\ln(x)] = \ln(1) + \frac{d}{dx} \ln(x) \Big|_{x=1} \cdot (x-1) = x-1$$
 (3pts)
(2) $L[\ln(1.2)] = 0.2$ (3pts)

(b) ln(y+1) is continuous on [0,x], differentiable on (0.x). By mean value theorm, there exists a constant c in (0,x) such that $\frac{\ln(1+x)-\ln(1)}{x}=\frac{1}{1+c}<1$.

Also,
$$\frac{1}{1+c} > \frac{1}{1+x}$$
, so $\frac{1}{1+x} < \frac{\ln(1+x)}{x} < 1$ (5pts)

(c) Using (b),
$$\frac{1}{1.2} < \frac{\ln(1.2)}{0.2} < 1$$
, $\frac{1}{6} < \ln(1.2) < \frac{1}{5}$.
Take midpoint, $\ln(1.2) \approx \frac{11}{60}$ (3pts)

- 7. (12%) Let L be any line through the point (3, 24).
 - (a) The equation of the line L that cuts off the least area from the first quadrant is _______

 The least area is _______
 - (b) The equation of the line L which cuts off shotrest segment by the first quadrant is _______

 The length of the shortest segment is _______

Sol:

- (a) Line equation: y 24 = -8(x 3) (3 points) the least area is 144 (3 points)
- (b) Line equation: y 24 = -2(x 3) (3 points) the shortest segment length is $15\sqrt{5}$ (3 points)

Let y-24=m(x-3) be a line L through (3,24) with slope m<0 (No need to consider vertical line $m=\pm\infty$ and horizontal line m=0) x-intercept of L: $3-\frac{24}{m}$ y-intercept of L: 24-3m

(a) Area
$$A(m) = \frac{1}{2}(3 - \frac{24}{m})(24 - 3m) = \frac{9}{2}(16 - m - \frac{64}{m}) = \frac{9}{2}(16 - f(m))$$

where $f(m) = m + \frac{64}{m}$, $f'(m) = 1 - \frac{64}{m^2} = 0$, $m^2 = 64$, $m = \pm 8$

Since m < 0 and f'(m) > 0 when m < -8 and f'(m) < 0 when -8 < m < 0, f has an absolute maximum at m = 8, f(-8) = -16 \therefore The least area $= \frac{9}{2}(16 - (-16)) = 144$ L: y - 24 = -8(x - 3) or 8x + y = 48 (b) Squared segment length

$$L(m) = (3 - \frac{24}{m})^2 + (24 - 3m)^2 = 9[65 - \frac{16}{m} - 16m + \frac{64}{m^2} + m^2] = 9[65 - g(m)]$$
 where $g(m) = 16m + \frac{16}{m} - m^2 - \frac{64}{m^2}$,

$$g'(m) = 16 - 2m - \frac{16}{m^2} + \frac{128}{m^3} = \frac{16m^3 - 2m^4 - 16m + 128}{m^3} = \frac{-2}{m^3}[(m^3 + 8)(m - 8)],$$

 $m < 0$

Since
$$g'(m) > 0$$
 when $m < -2$ and $g'(m) < 0$ when $-2 < m < 0$, $m = -2$
The length of the shortest segment $= \sqrt{(3+12)^2 + (24+6)^2} = 15\sqrt{5}$
 $L: y - 24 = -2(x-3)$ or $y + 2x = 30$

- Four answers, 3 points each. But if the answer is correct but the procedure is wrong, no points will be credited.
- * For the area in part (a), 2 points will be credited if your answer differs from the correct answer only by a simple factor (e.g. if your answer is 288).
- * If your answer of any line equation is in the form of $\frac{y-a}{x-b}=m$, 1 point will be deducted.
- Partial credits will be given only if the answers are all wrong:

Parameterization of x-intercept and y-intercept: 1 point each, not given twice for (a) and (b).

Formulation of area (in terms of a single parameter) in (a): 1 point.

Formulation of segment length (in terms of a single parameter) in (b): 1 point.

8. (20%) Let
$$f(x) = \begin{cases} |x|^x, & x \neq 0 \\ 1, & x = 0. \end{cases}$$

- (a) Find the horizontal asymptotes if exist. Ans:
- (b) f'(x) =_____
- (d) f''(x) =______
- (e) y = f(x) is concave upward on interval(s) ______

y = f(x) is concave downward on interval(s) ______

(Hint: $f''(x) = 0 \Leftrightarrow x = -1$)

- (f) If the extreme values exist,
 - f(x) has a local maximum: _____ at x = _____
 - f(x) has a local minimum: _____ at x = _____
- (g) f(x) has inflection point(s):
- (h) Sketch the graph of y = f(x).

Sol:

(a)
$$\lim_{x \to \infty} |x|^x = \infty^{\infty} = \infty, \qquad (1 \text{ point})$$

$$\lim_{x \to -\infty} |x|^x = \lim_{x \to -\infty} e^{x \ln |x|} = e^{\lim_{x \to -\infty} x \ln |x|}$$

$$= e^{-\infty \cdot \infty} = e^{-\infty} = 0, \qquad (1 \text{ point})$$

Therefore, y = 0 is a horizontal asymptotes of f(x).

(b) When $x \neq 0$, $y = |x|^x$

$$ln y = ln |x|^x = x ln |x|$$

$$\frac{y'}{y} = \ln|x| + \frac{x}{|x|} \frac{d}{dx}|x| = \ln|x| + 1$$

$$\Rightarrow y' = f'(x) = |x|^x (\ln|x| + 1) \text{ for } x \neq 0$$

When x = 0,

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} |x|^x = \lim_{x \to 0} e^{x \ln |x|}$$

$$= e^{\lim_{x \to 0} x \ln |x|} = e^{\lim_{x \to 0} \frac{\ln |x|}{\frac{1}{x}}}$$

$$= e^{\lim_{x \to 0} \frac{1}{x}} = e^{\lim_{x \to 0} -x}$$

$$= e^0 = 1 = f(0).$$

Therefore, f(x) is continuous at 0.

Since
$$f'(x) = |x|^x (\ln|x| + 1) \to -\infty$$
 as $x \to 0$,

So, f'(0) doesn't exist.

Thus,
$$f'(x) = |x|^x (\ln |x| + 1)$$
, when $x \neq 0, \dots (2 \text{ point})$

(c)
$$f'(x) > 0 \Rightarrow x > e^{-1}$$
 or $x < -e^{-1}$

$$\Rightarrow f(x)$$
 is increasing on $(-\infty, -e^{-1}) \cup (e^{-1}, \infty) \dots (1 \text{ point})$

 $f'(x) < 0 \Rightarrow -e^{-1} < x < e^{-1}$ $\Rightarrow f(x)$ is decreasing on $(-e^{-1}, e^{-1})$(1 point)

- (d) $f'(x) = |x|^x (\ln |x| + 1)$ for $x \neq 0$ $\Rightarrow f''(x) = |x|^x (\ln |x| + 1)^2 + \frac{1}{x} |x|^x \text{ for } x \neq 0.\dots (2 \text{ point})$
- (f) From (c), $f(x) \text{ has a local maximum } f(-\frac{1}{e}) = e^{\frac{1}{e}} \text{ at } x = -\frac{1}{e}.....(2 \text{ point})$ $f(x) \text{ has a local minimum } f(\frac{1}{e}) = e^{-\frac{1}{e}} \text{ at } x = \frac{1}{e}....(2 \text{ point})$
- - 3. 正確的畫出函數的上凹與下凹.....(1 point)

