982微積分甲01-05班期末考解答與評分標準

1. (10%) Let $f(x,y) = \frac{x^n + y^n}{2}, \ x > 0, \ y > 0, \ n > 2, \ n \in \mathbb{N}.$

(a) Apply the method of Lagrange multipliers to find the extreme values of the function f(x, y) on the line x + y = C, where C > 0. (No credits if the method is not used.)

(b) Use part (a) to prove the inequality $\frac{x^n + y^n}{2} \ge (\frac{x+y}{2})^n$, x > 0, y > 0, $n \in \mathbb{N}$.

Sol:

(a) Apply lagrange multiplier: $\frac{nx^{n-1}}{2} = \lambda, \frac{ny^{n-1}}{2} = \lambda$ x + y = C

Slove it to get $(x, y) = (\frac{c}{2}, \frac{c}{2})$

Because x + y = C, $x \ge 0$, $y \ge 0$ is bounded and closed line segment

and f(x, y) is differentiable on this line segment.

It must contain maximum and minimun value.

Compare
$$(\frac{c}{2}, \frac{c}{2})$$
 with end points $(c, 0), (0, c)$
 $f(\frac{c}{2}, \frac{c}{2}) = (\frac{c}{2})^n$ is minimum on $x + y = C, x \ge 0, y \ge 0$
 $f(0, c) = f(c, 0) = \frac{c^n}{2}$ is maximum on $x + y = C, x \ge 0, y \ge 0$
thus $f(\frac{c}{2}, \frac{c}{2}) = (\frac{c}{2})^n$ is minimum on $x + y = C, x > 0, y > 0$
(b) $n = 1, \frac{x + y}{2} \ge \frac{x + y}{2}$
 $n = 2, \frac{x^2 + y^2}{2} - (\frac{x + y}{2})^2 = \frac{(x - y)^2}{4} \ge 0$, so $\frac{x^2 + y^2}{2} \ge (\frac{x + y}{2})^2$
 $n > 2$, when $x + y = C$, $C > 0$. By (a), $\frac{x^n + y^n}{2} \ge (\frac{c}{2})^n = (\frac{x + y}{2})^n$
thus $\frac{x^n + y^n}{2} \ge (\frac{x + y}{2})^n, x > 0, y > 0, n \in \mathbb{N}$

評分標準:

Use lagrange method to find possible extreme values. (5 pts)

Verify $f(\frac{c}{2}, \frac{c}{2})$ is the extreme value(minimum). (3 pts) prove inequality $\frac{x^n + y^n}{2} \ge (\frac{x+y}{2})^n$. (2 pts)

2. (8%) Evaluate $\int_0^1 \int_{\frac{y}{2}}^y y^3 e^{x^5} dx dy + \int_1^2 \int_{\frac{y}{2}}^1 y^3 e^{x^5} dx dy$. Sol: Change the integral order (2 pts)

the domain of integral: $x \le y \le 2x, \ 0 \le x \le 1$

$$\int_{0}^{1} \int_{x}^{2x} y^{3} e^{x^{5}} dy dx \quad (2 \text{ pts})$$

$$= \int_{0}^{1} \frac{1}{4} y^{4} e^{x^{5}} \Big|_{y=x}^{y=2x} dx$$

$$= \int_{0}^{1} \frac{15}{4} x^{4} e^{x^{5}} dx \quad (2 \text{ pts})$$

$$= \frac{3}{4} e^{x^{5}} \Big|_{x=0}^{x=1}$$

$$= \frac{3}{4} (e-1) \quad (2 \text{ pts})$$

3. (8%) Evaluate
$$\iint_{D} \frac{x^2}{\sqrt{x^2 + y^2}} dA$$
, where $D = \{(x, y) \in \mathbb{R}^2 | 1 \le x^2 + y^2 \le 4, y \ge x\}$.
Sol:

Using polar coordinate (1 pt)

$$D = \{(r,\theta) | 1 \le r \le 2, \frac{\pi}{4} \le \theta \le \frac{5\pi}{4} \} \quad (2 \text{ pts})$$
$$\int_{\pi/4}^{5\pi/4} \int_{1}^{2} \frac{r^{2} \cos^{2} \theta}{r} r dr d\theta \quad (1 \text{ pt})$$
$$= \int_{\pi/4}^{5\pi/4} \frac{1}{3} r^{3} \Big|_{r=1}^{r=2} \cos^{2} \theta d\theta \quad (1 \text{ pt})$$
$$= \frac{7}{3} (\frac{\theta}{2} + \frac{\sin 2\theta}{4}) \Big|_{\theta=\pi/4}^{\theta=5\pi/4} \quad (2 \text{ pts})$$
$$= \frac{7\pi}{6} \quad (1 \text{ pt})$$

4. (14%) (a) Evaluate $I_1 = \iint_{R_1} e^{-(x^2 + xy + y^2)} dA$, where $R_1 = \{(x, y) | x^2 + xy + y^2 \le 1\}$. (b) Evaluate $I_2 = \iint_{R_2} x^2 y^2 dA$, where R_2 is the region bounded by xy = 1, xy = 2, y = x, y = 4x, and x > 0, y > 0.

Sol:

(a) Method1:

$$x^{2} + xy + y^{2} = (x + \frac{1}{2}y)^{2} + \frac{3}{4}y^{2}$$

Let $u = x + \frac{1}{2}y, v = \frac{\sqrt{3}y}{2}, x = u - \frac{v}{\sqrt{3}}, y = \frac{2v}{\sqrt{3}}$ (1 pt)
Preimage of R_{1} is $R'_{1} = \{(u, v) | u^{2} + v^{2} \leq 1\}$ (1 pt)

$$J = \begin{vmatrix} 1 & \frac{-1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{3}} \end{vmatrix} = \frac{2}{\sqrt{3}} \quad (2 \text{ pts})$$
$$I_1 = \int \int_{R_1} e^{-(x^2 + xy + y^2)} dA = \int \int_{R_1'} e^{-(u^2 + v^2)} \frac{2}{\sqrt{3}} du dv$$
$$= \frac{2}{\sqrt{3}} \int_0^{2\pi} \int_0^1 e^{-r^2} r \, dr d\theta$$
$$= \frac{2}{\sqrt{3}} \int_0^{2\pi} \frac{1}{2} (1 - \frac{1}{e}) \, d\theta$$
$$= \frac{2}{\sqrt{3}} \pi (1 - \frac{1}{e}) \quad (3 \text{ pts})$$

Method2:

Let
$$u = \frac{(x+y)}{\sqrt{2}}, v = \frac{-x+y}{\sqrt{2}}$$
 (1 pt)
 $x^2 + xy + y^2 = \frac{3}{2}u^2 + \frac{1}{2}v^2 \le 1$ (1 pt)
 $\int \int_{R_1} e^{-(x^2 + xy + y^2)} dA = \int \int_{\frac{3}{2}u^2 + \frac{1}{2}v^2 \le 1} e^{-(\frac{3}{2}u^2 + \frac{1}{2}v^2)} du dv$
 $= \frac{1}{\sqrt{3}} \int \int_{\eta^2 + v^2 \le 2} e^{-\frac{\eta^2 + v^2}{2}} d\eta dv$ (2 pts)
 $= \frac{1}{\sqrt{3}} \int_{0}^{2\pi} \int_{0}^{\sqrt{2}} e^{-\frac{r^2}{2}r} dr d\theta$
 $= \frac{2}{\sqrt{3}}\pi (1 - \frac{1}{e})$ (3 pts)

(b) Let
$$u = xy, v = \frac{y}{x}$$

 $x = \sqrt{\frac{u}{v}}, y = \sqrt{uv}$ (1 pt)
Preimage of R_2 is $R'_2 = \{(u, v) | 1 \le u \le 2, 1 \le v \le 4\}$ (1 pt)
 $J = \begin{vmatrix} \frac{1}{2}u^{\frac{-1}{2}}v^{\frac{-1}{2}} & \frac{-1}{2}u^{\frac{1}{2}}v^{\frac{-3}{2}} \\ \frac{1}{2}u^{\frac{-1}{2}}v^{\frac{-1}{2}} & \frac{1}{2}u^{\frac{1}{2}}v^{\frac{-1}{2}} \end{vmatrix} = \frac{1}{2v}$ (2 pts)
 $I_2 = \int \int_{R_2} x^2 y^2 dA = \int \int_{R_2} u^2 \frac{1}{2v} du dv$
 $= \frac{1}{2} \int_1^4 \int_1^2 u^2 v^{-1} du dv$
 $= \frac{1}{2} \int_1^4 \frac{7}{3} v^{-1} dv = \frac{7}{3} \ln 2$ (3 pts)

5. (18%) Let $\mathbf{F}(x,y) = \left\langle \frac{x-y}{x^2+y^2}, \frac{x+y}{x^2+y^2} \right\rangle$, $(x,y) \neq (0,0)$, and $H = \{(x,y)|y>0\}$ be the upper half plane.

- (a) Compute $J_1 = \int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the unit circle with counterclockwise orientation. Is **F** conservative on $\mathbb{R}^2 \setminus \{(0,0)\}$?
- (b) Show that $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for any piecewise-smooth simple closed curve C in H.
- (c) Suppose that Γ is a piecewise-smooth simple curve in H with initial point $P_1 = (r_1 \cos \theta_1, r_1 \sin \theta_1)$ and terminal point $P_2 = (r_2 \cos \theta_2, r_2 \sin \theta_2), r_j > 0, 0 < \theta_j < \pi, j = 1, 2$. Evaluate $J_2 = \int_{\Gamma} \mathbf{F} \cdot d\mathbf{r}$ in terms of r_1, r_2, θ_1 , and θ_2 . (Hint. Try a path with constant r in one piece and constant θ in another piece.)

Sol:

(a) Let $\mathbf{r}(\theta) = (\cos \theta, \sin \theta), \ 0 \le \theta < 2\pi$, be the parametric equation for \mathcal{C} .

$$J_1 = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \mathbf{F} \cdot \mathbf{r}'(\theta) d\theta = \int_0^{2\pi} (\cos^2 \theta + \sin^2 \theta) d\theta = 2\pi \neq 0$$

Therefore, **F** is NOT conservative on $\mathbb{R}^2 - \{(0,0)\}$.

(b) Let \mathcal{C} be a piecewise-smooth simple closed curve in \mathbf{H} and D be the region bounded by \mathcal{C} . Give \mathcal{C} a counterclockwise orientation so that $\partial D = \mathcal{C}$. By Green's theorem, since $D \subseteq \mathbf{H}$, on which \mathbf{F} is well-defined, and \mathbf{H} is simply connected,

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} \left[\frac{\partial}{\partial x} \left(\frac{x+y}{x^2+y^2} \right) - \frac{\partial}{\partial y} \left(\frac{x-y}{x^2+y^2} \right) \right] dA = \iint_{D} 0 dA = 0$$

- (c) It follows from (b) that $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ is independent of path in **H**. Thus, to compute $\int_{\Gamma} \mathbf{F} \cdot d\mathbf{r}$, let $\mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2$ be a path connecting P_1 and P_2 .
 - $C_1: \mathbf{r}_1(t) = (r_1 \cos t, r_1 \sin t), t \text{ goes from } \theta_1 \text{ to } \theta_2$
 - C_2 : $\mathbf{r}_2(t) = (t \cos \theta_2, t \sin \theta_2), t \text{ goes from } r_1 \text{ to } r_2$

Then it's easy to see that $\mathbf{F}(\mathbf{r}_1(t)) \cdot \mathbf{r}'_1(t) = 1$ and $\mathbf{F}(\mathbf{r}_2(t)) \cdot \mathbf{r}'_2(t) = \frac{1}{t}$.

$$\int_{\Gamma} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}_1 \cup \mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r} = \int_{\theta_1}^{\theta_2} 1 dt + \int_{r_1}^{r_2} \frac{1}{t} dt = \theta_2 - \theta_1 + \ln\left(\frac{r_2}{r_1}\right) = J_2$$

6. (12%) Evaluate $I = \int_C \frac{y^2}{\sqrt{R^2 + x^2}} dx + \left[4x + 2y \ln(x + \sqrt{R^2 + x^2})\right] dy$, where C is the upper semicircle $x^2 + y^2 = R^2$, $y \ge 0$, R > 0, and is traversed from A(-R, 0) to B(R, 0). (Hint. Apply Green's Theorem.)

Sol:

We want to find I, where I is

$$I = \int_C \frac{y^2}{\sqrt{R^2 + x^2}} dx + [4x + 2y \log(x + \sqrt{R^2 + x^2})] dy = \int_C P dx + Q dy$$
Worth 2 pts:

Before we do anything, we must deal with our curve C. In order to use Green's theorem we must make sure C satisfies all of the assumptions for the theorem, that is that C is a positively oriented, piecewise smooth, and simple closed curve. However, C does not satisfy these assumptions; hence we must make it so a line segment, call L, runs from B(R,0) to A(-R,0). Now we see that CUL is closed and piecewise smooth with clockwise orientation. Clockwise orientation is not positive orientation, so we will have a negative sign out in front.

Worth 4 pts:

Now note that I = I + J

J being:

$$J = \int_{L} P dx + Q dy$$

Note that for $J, dy = 0 \Rightarrow = \int_{L} 0 dx + Q * 0$
Hence $J = 0$

Worth 2 pts:

Now we can deal with the domain bounded by CUL, which we call D. By Green's Theorem:

$$I = I + J$$

= $\int_{CUL} Pdx + Qdy$
= $-\iint_{D} (Qx - Py)dA$

Worth 2 pts:

Finding Qx and Py: $Qx = 4 + \frac{2y}{\sqrt{R^2 + x^2}}, Py = \frac{2y}{\sqrt{R^2 + x^2}}$

Worth 2 pts:

Plugging the above into I gives: $I = -\iint_D 4dA = -2\pi R^2$

7. (12%) Evaluate
$$\iint_{S} \operatorname{curl} \mathbf{G} \cdot d\mathbf{S}$$
, where $\mathbf{G}(x, y, z) = x^2 y z \mathbf{i} + y z^2 \mathbf{j} + z^3 e^{xy} \mathbf{k}$, S is the part of the

sphere $x^2 + y^2 + z^2 = 5$ that lies above the plane z = 1, and S is oriented upward. Sol:

Let \mathcal{C} be the boundary of the surface S.

Then C can be parameterized as $(x, y, z) = (2\cos\theta, 2\sin\theta, 1), \ 0 \le \theta \le 2\pi$. (4 pts) $G(x, y, z) = (8\sin\theta, 2\sin\theta, e^{4\sin\theta\cos\theta}), \ dr = (dx, dy, dz) = (-2\sin\theta, 2\cos\theta, 0).$ By Stoke's theorem,

$$\iint_{S} \operatorname{curl} \mathbf{G} \cdot d\mathbf{S} = \int_{\mathcal{C}} \mathbf{G} \cdot d\mathbf{r} \quad (4 \text{ pts})$$
$$= \int_{0}^{2\pi} -16\sin^{2}\theta\cos^{2}\theta + 4\sin\theta\cos\theta d\theta$$
$$= \int_{0}^{2\pi} -4\sin^{2}2\theta + 2\sin2\theta d\theta$$
$$= -4\pi \quad (4 \text{ pts})$$

8. (18%) Let *B* be the ball centered at the origin with radius $\rho_0 > 0$, and *W* be the smaller wedge cut from *B* by two planes y = 0 and $y = \sqrt{3}x$. The boundary of *W* consists of 3 surfaces S_1 , S_2 , and S_3 : $\partial W = S_1 \cup S_2 \cup S_3$, and is given with outward orientation. Here S_1 and S_2 are semidisks on y = 0 and $y = \sqrt{3}x$, respectively, and S_3 is on the boundary of *B*, a sphere of radius ρ_0 . See the figure. Let $\mathbf{H}(x, y, z) = xz\mathbf{i} + y\mathbf{j} - x^2\mathbf{k}$.

Sol:

(a) Note that the surface S_3 is a piece of the sphere $\{(x, y, z) : x^2 + y^2 + z^2 = \rho_0^2\}$. The spherical coordinate works. So let $x = \rho_0 \sin \phi \cos \theta$, $y = \rho_0 \sin \phi \sin \theta$, and $z = \rho_0 \cos \phi$. Notice that $\theta \in [0, \pi/3]$ and $\phi \in [0, \pi]$. (2 pts)

The parametric representation is given by

$$r(\theta,\phi) = (\rho_0 \sin\phi \cos\theta, \rho_0 \sin\phi \sin\theta, \rho_0 \cos\phi), \quad \theta \in [0,\pi/3], \quad \phi \in [0,\pi]. \quad (2 \text{ pts})$$

(b) Since S_3 is a piece of the sphere, the outward normal of S_3 is given by

$$\mathbf{n}(x, y, z) = \frac{(x, y, z)}{\rho_0}, \quad (x, y, z) \in S_3.$$

And $\mathbf{H}(x, y, z) \cdot \mathbf{n}(x, y, z) = \frac{y^2}{\rho_0}$. So the integral is given by

$$\iint_{S_3} \mathbf{H} \cdot d\mathbf{S} = \iint_{S_3} \mathbf{H} \cdot \mathbf{n} dS = \iint_R \frac{y^2}{\rho_0} \rho_0^2 \sin \phi d\theta d\phi = \int_0^{\pi/3} \int_0^{\pi} \rho_0^3 \sin^3 \phi \sin^2 \theta d\phi d\theta \quad (4 \text{ pts})$$

Here $R = [0, \pi/3] \times [0, \pi]$. Note that

$$\int_{0}^{\pi/3} \int_{0}^{\pi} \rho_{0}^{3} \sin^{3} \phi \sin^{2} \theta d\phi d\theta = \rho_{0}^{3} \int_{0}^{\pi/3} \sin^{2} \theta d\theta \int_{0}^{\pi} \sin^{3} \phi d\phi$$

For the first integral, consider $\sin^2 \theta = (1 - \cos 2\theta)/2$.

$$\int_0^{\pi/3} \sin^2 \theta d\theta = \int_0^{\pi/3} \frac{1 - \cos 2\theta}{2} d\theta = \left(\frac{\theta}{2} - \frac{1}{4}\sin 2\theta\right) \Big|_0^{\pi/3} = \frac{\pi}{6} - \frac{\sqrt{3}}{8}$$

For the later one, we have

$$\int_0^{\pi} \sin^3 \phi d\phi = -\int_0^{\pi} (1 - \cos^2 \phi) d\cos \phi = \left(\frac{1}{3}\cos^3 \phi - \cos \phi\right) \Big|_0^{\pi} = \frac{4}{3}$$

 So

$$\iint_{S_3} \mathbf{H} \cdot d\mathbf{S} = \frac{4}{3}\rho_0^3 \left(\frac{\pi}{6} - \frac{\sqrt{3}}{8}\right) \quad (3 \text{ pts})$$

(c) $\nabla \cdot \mathbf{H} = z + 1$. So by divergence theorem,

$$\iint_{S_1 \cup S_2} \mathbf{H} \cdot d\mathbf{S} + \iint_{S_3} \mathbf{H} \cdot d\mathbf{S} = \iiint_E \nabla \cdot \mathbf{H} dV = \iiint_E (z+1) dV, \quad (4 \text{ pts})$$

where E is the solid bounded by $S_1 \cup S_2 \cup S_3$. Firstly, note that E is symmetric with respect to xy-plane. Therefore,

$$\iiint_E z dV = 0$$

So

$$\iiint_E (z+1)dV = \iiint_E dV = \frac{4}{3}\pi\rho_0^3 \frac{\pi/3}{2\pi} = \frac{2}{9}\pi\rho_0^3 \quad (3 \text{ pts})$$

since the volume of E is equal to the volume of the sphere times $\frac{\pi/3}{2\pi} = 1/6$. Now

$$\iint_{S_1 \cup S_2} \mathbf{H} \cdot d\mathbf{S} = \iiint_E \nabla \cdot \mathbf{H} dV - \iint_{S_3} \mathbf{H} \cdot d\mathbf{S} = \frac{2}{9} \pi \rho_0^3 - \frac{4}{3} \rho_0^3 \left(\frac{\pi}{6} - \frac{\sqrt{3}}{8}\right) = \frac{\sqrt{3}}{6} \rho_0^3$$