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1. (10%) Let f(x,y) = 5

(a) Apply the method of Lagrange multipliers to find the extreme values of the function

f(z,y) on the line z +y = C, where C' > 0. (No credits if the method is not used.)

" 4+ y" S r+y

(b) Use part (a) to prove the inequality 5 2 ( 5

), x>0, y>0, neN.
Sol:

(a) Apply lagrange multiplier:

n—1 n—1
nT “a ny )
2 2
x+y=C

c c
22
Because r+y = C, z > 0, y > 0 is bounded and closed line segment

Slove it to get (z,y) = (

and f(x,y)is differentiable on this line segment.

It must contain maximum and minimun value.

Compare (g, g) with end points (¢, 0), (0, c)
¢ C) = (E)” is minimumon s +y=C, >0,y >0

f(33)= @) ism
f((),c):f(c,()):% is maximmmonx+y=C,x>0,y>0

thus f(%,g) = (E)” is minimumonz+y=C, 2 >0,y >0

2
() n=1, 2512
x4 9? x+ x— )2 x4 92 x+
n—2. 2y —( 23/)2:( 4@/) > 0, 50 2y > 29)2

n>2,whenx+y:C’,C>0.By(a),x —2|—y 2(;)” ( 5 )"

thus xn_;_yn > (x;—y)”, xr>0,y>0,neN
FFARAE:
Use lagrange method to find possible extreme values. (5 pts)
Verify f (g, g) is the extreme value(minimum). (3 pts)
prove inequality ! ; Y > <x —2|— y)” (2 pts)
1y 2 1
2. (8%) Evaluate / /y yie® dudy + / /y ye” dady.
Sol: T L



Change the integral order (2 pts)

the domain of integral:z <y <2z, 0 <z <1

// y2e® dydz (2 pts)
= y e
%

115
—z*e” dx (2 pts)

y=2x
dx

y=x

(e —1) (2 pts)

2

3. (8%) Evaluate // \/% dA, where D = {(z,y) e R¥}|1 < 2* +y* <4, y > x}.
s e +y

Sol:

Using polar coordinate (1 pt)

D={roi<r<2’ <0<} (@pis)
5t/d 2.2 2
/ / L eos erdrde (1 pt)
1 T

5m/4 1
= / —’]“3
/4 3

r=2
cos®0df (1 pt)

r=1

_7(9+sin29 ‘9=57T/4 2 pts)
T39 7T T oy PP
G
= (1pt
5 (1 pt)

4. (14%) (a) Evaluate I; = // @ +2v+0%) 4 A, where Ry, = {(z,y)|2* + 2y + > < 1}.

(b) Evaluate I, = / / 2dA, where R, is the region bounded by zy = 1, zy = 2, y =

x, y=4x, andx>0 y > 0.
Sol:

(a) Method1:

1 3
x2+:cy+y2:(:1:—|—§y)2+1y2

3
Letu:x+—y,v:Q T =u—

5 5 e —%(Uﬁ)
?<1} (1pt)

Preimage of R is R} = {(u,v)|u* +v

\)



(2 pts)

I = // e~ (@ Hauty®) g A — // e_(“2+”2)i dudv
R . V3

) 27 1 )

= — e " rdrdd
il
2 (™1 1

_ —_— _— 1 —_— —
vl R

2 1
= %W(l — g) (3 pts)

T
SIS L
!
Sl

Method?2:

Let u = ($+y),v: Tty (1 pt)

V2 V2

3 1
P4 ay+y? = u+2v <1 (1pt)

/ / —(@teyty?) g4 — / / —(Gv* 3 gy dy
R1 u2+ v2<1
\/_//77V+U2<2
= — 7 rdrdQ
T
1

2
= %W(l ——) (3 pts)

e

(2 pts)

(b) Let u = xy,v =

[B:\/E, y=+uv (1pt

)
Preimage of Ry is Ry = {(u,v)|1 <u<2,1<wv <4} (1 pt)
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1 5,2 113
U2V —U2v 1
|1 2 2 _
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1
12:// m2y2dA:// u2—dudv
R2 Ry
//uv L dudv

7
S “ldv==-1In2 (3 pt
2/13 v=22 (3 pts)

5. (18%) Let F(z,y) = <$€:—z2’ £152>, (z,y) # (0,0), and H = {(x,y)|y > 0} be the upper

half plane.



(a) Compute J; = / F - dr, where C' is the unit circle with counterclockwise orientation. Is
c

F conservative on R? \ {(0,0)}?

(b) Show that / F - dr = 0 for any piecewise-smooth simple closed curve C'in H.
c

(c) Suppose that I is a piecewise-smooth simple curve in H with initial point P; = (r; cos 0y, 71 sin 6;)

and terminal point P, = (rpcosby,masinfby), r; > 0, 0 < 0; < m, j = 1,2. Evaluate
Jo = /F -dr in terms of ry, re, 01, and fy. (Hint. Try a path with constant r in one
r

piece and constant € in another piece.)
Sol:

(a) Let r(0) = (cosf,sinf), 0 < 0 < 27, be the parametric equation for C.

27 2
le/F-dr:/ F-r'(@)d@z/ (cos? 0 + sin?0)df = 27 # 0
c 0 0

Therefore, F is NOT conservative on R* — {(0,0)}.

(b) Let C be a piecewise-smooth simple closed curve in H and D be the region bounded by C.
Give C a counterclockwise orientation so that 0D = C. By Green’s theorem, since D C H,

on which F is well-defined, and H is simply connected,

o [ () 5 () f

(c) It follows from (b) that / F - dr is independent of path in H. Thus, to compute / F.dr,
C r

let C = C; UC5 be a path connecting P; and P».

Cy :11(t) = (rp cost,rysint), t goes from 6; to 65

Cy : ro(t) = (tcos by, tsinby), t goes from 71 to ro

Then it’s easy to see that F(ry(t)) - r}(t) =1 and F(ry(t)) - rh(t) =

02 72 1 7“2
/Fdr:/ Fdr:/ 1dt+/ —dt:02—01+1n(—):J2
r C1UC2 01 o) t (&1

. (12%) Evaluate [ —/
o (12) \/m
semicircle 2* +3*> = R?, y > 0, R > 0, and is traversed from A(—R,0) to B(R,0). (Hint.

1
.

———dr + [4$ + 2yIn(x + VR? + 1‘2)}6@, where C' is the upper

Apply Green’s Theorem.)



Sol:
We want to find I, where [ is

2
]:/y—dx+[4x+2ylog(x+vR2+x2)]dy:/de+Qdy
c VR?+ 12 c

Worth 2 pts:

Before we do anything, we must deal with our curve C. In order to use Green’s theorem
we must make sure C' satisfies all of the assumptions for the theorem, that is that C' is a
positively oriented, piecewise smooth, and simple closed curve. However, C' does not satisfy
these assumptions; hence we must make it so a line segment, call L, runs from B(R,0) to
A(—R,0). Now we see that CUL is closed and piecewise smooth with clockwise orientation.

Clockwise orientation is not positive orientation, so we will have a negative sign out in front.

Worth 4 pts:
Now note that [ =1+ J
J being:
J = / Pdz + Qdy
L
Note that for J, dy =0 == /LOda:+Q*O

Hence J =0

Worth 2 pts:

Now we can deal with the domain bounded by CUL, which we call D. By Green’s Theorem:

I=1+J
= / Pdx 4+ Qdy
CUL
—— [[(@e - Py
D
Worth 2 pts:
2y 2y

Finding Qx and Py: Qr =4+ ——, Py= ———
g Qrand Py: @ Y e

Worth 2 pts:
Plugging the above into I gives: I = — // 4dA = =21 R?
D

7. (12%) Evaluate // curlG - dS, where G(x,y, 2) = 2yzi + y2*j + 2°¢"k, S is the part of the
s

5



sphere 2% + y* + 2% = 5 that lies above the plane z = 1, and S is oriented upward.
Sol:

Let C be the boundary of the surface S.

Then C can be parameterized as (z,y,2) = (2cos#,2sin6,1), 0 < 0 < 27. (4 pts)
G(z,y,2) = (8sin 8, 2sin 6, e* 509 " dr = (da, dy,dz) = (—2sinf,2cos b, 0).

By Stoke’s theorem,

//curlG-dS:/G'dr (4 pts)
g c
27

— / —16sin? 0 cos® 6 + 4 sin 6 cos 6dP
027r

_ / —45in?20 + 2sin 20d6
0

= —47 (4 pts)

8. (18%) Let B be the ball centered at the origin with radius py > 0, and W be the smaller wedge
cut from B by two planes y = 0 and y = v/3z. The boundary of W consists of 3 surfaces S,
Ss, and S3: OW = S; U S, U S35, and is given with outward orientation. Here S; and Sy are
semidisks on y = 0 and y = V/3z, respectively, and Sj is on the boundary of B, a sphere of

z
radius po. See the figure. Let H(z,y, 2) = xzi + yj — 2°k. A

W 10,0,0)
(a) Find a parametric representation for the surface Ss. T~

\
(b) Compute //H - dS. )
S3 ( O 9070) |
X \
(c) Compute / H - dS. (Hint. Use the Divergence Theorem.) y y

S1USo

(a) Note that the surface Ss is a piece of the sphere {(z,y,2) : 2* + y* + 2> = pi}. The
spherical coordinate works. So let x = pgsin¢cosf, y = ppsinpsinf, and z = pg cos .
Notice that 6 € [0,7/3] and ¢ € [0, 7]. (2 pts)

The parametric representation is given by

(6, ¢) = (posin ¢ cos @, posin ¢sin b, pgcos @), 6 € [0,7/3], ¢ € [0,7]. (2 pts)



(b) Since Ss is a piece of the sphere, the outward normal of S is given by

n(z,y, 2) = (“’”j’ D (wy2) €S
0

2
And H(z,y, 2) -n(z,y,2) = Y~ So the integral is given by
Po

2 w/3 pmw
//H -dS = //H -ndS = // y—pg sin pdfdo = / / ps sin® ¢ sin® Odedd (4 pts)
Po 0 0
S S3 R

Here R = [0,7/3] x [0, 7]. Note that
w/3 pm w/3 T
/ / pi sin® ¢ sin® Odpdl = pg/ sin? Hdﬁ/ sin® ¢do
0 0 0 0

For the first integral, consider sin® @ = (1 — cos 26)/2.

/3 ™31 — cos 26 6 1
/0 sin? 0df = /0 %d@ = (5 1 sin 20)

For the later one, we have

w/3 \/§
6 8

o=

0

/7T sin® pdo = —/W(l — cos® ¢)dcos ¢ = (lcos3gz5 - cosqb)
0 0 3

//H-ds=§p3 <%—\§> (3 pts)
S3

(¢) V-H = z+1. So by divergence theorem,

//H dS+//H ds = ///V HdV = ///z+1dV (4 pts)

S1USo

where E is the solid bounded by S; U Sy U S3. Firstly, note that F is symmetric with

/E/ / 2dV =0
[ = [ v =g = v

/3

since the volume of E is equal to the volume of the sphere times or = 1/6. Now
T

[ [ff 5 ma— [[uis e (5-2) -

S1US>

So

respect to zy-plane. Therefore,

So



