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1. (10%) Let f(x, y) =
xn + yn

2
, x > 0, y > 0, n > 2, n ∈ N.

(a) Apply the method of Lagrange multipliers to find the extreme values of the function

f(x, y) on the line x + y = C, where C > 0. (No credits if the method is not used.)

(b) Use part (a) to prove the inequality
xn + yn

2
≥ (

x + y

2
)n, x > 0, y > 0, n ∈ N.

Sol:

(a) Apply lagrange multiplier:

nxn−1

2
= λ,

nyn−1

2
= λ

x + y = C

Slove it to get (x, y) = (
c

2
,
c

2
)

Because x + y = C, x > 0, y > 0 is bounded and closed line segment

and f(x, y)is differentiable on this line segment.

It must contain maximum and minimun value.

Compare (
c

2
,
c

2
) with end points (c, 0), (0, c)

f(
c

2
,
c

2
) = (

c

2
)n is minimum on x + y = C, x > 0, y > 0

f(0, c) = f(c, 0) =
cn

2
is maximum on x + y = C, x > 0, y > 0

thus f(
c

2
,
c

2
) = (

c

2
)n is minimum on x + y = C, x > 0 , y > 0

(b) n = 1,
x + y

2
> x + y

2

n = 2,
x2 + y2

2
− (

x + y

2
)2 =

(x − y)2

4
> 0, so

x2 + y2

2
> (

x + y

2
)2

n > 2, when x + y = C , C > 0 . By (a),
xn + yn

2
> (

c

2
)n = (

x + y

2
)n

thus
xn + yn

2
> (

x + y

2
)n, x > 0, y > 0, n ∈ N

評分標準:

Use lagrange method to find possible extreme values. (5 pts)

Verify f(
c

2
,
c

2
) is the extreme value(minimum). (3 pts)

prove inequality
xn + yn

2
> (

x + y

2
)n. (2 pts)

2. (8%) Evaluate

∫ 1

0

∫ y

y
2

y3ex5

dxdy +

∫ 2

1

∫ 1

y
2

y3ex5

dxdy.

Sol:

1



Change the integral order (2 pts)

the domain of integral:x ≤ y ≤ 2x, 0 ≤ x ≤ 1∫ 1

0

∫ 2x

x

y3ex5

dydx (2 pts)

=

∫ 1

0

1

4
y4ex5

∣∣∣y=2x

y=x
dx

=

∫ 1

0

15

4
x4ex5

dx (2 pts)

=
3

4
ex5

∣∣∣x=1

x=0

=
3

4
(e − 1) (2 pts)

3. (8%) Evaluate

∫∫
D

x2√
x2 + y2

dA, where D = {(x, y) ∈ R2|1 ≤ x2 + y2 ≤ 4, y ≥ x}.

Sol:

Using polar coordinate (1 pt)

D = {(r, θ)|1 ≤ r ≤ 2,
π

4
≤ θ ≤ 5π

4
} (2 pts)

∫ 5π/4

π/4

∫ 2

1

r2 cos2 θ

r
rdrdθ (1 pt)

=

∫ 5π/4

π/4

1

3
r3

∣∣∣r=2

r=1
cos2 θdθ (1 pt)

=
7

3
(
θ

2
+

sin 2θ

4
)
∣∣∣θ=5π/4

θ=π/4
(2 pts)

=
7π

6
(1 pt)

4. (14%) (a) Evaluate I1 =

∫∫
R1

e−(x2+xy+y2) dA, where R1 = {(x, y)|x2 + xy + y2 ≤ 1}.

(b) Evaluate I2 =

∫∫
R2

x2y2 dA, where R2 is the region bounded by xy = 1, xy = 2, y =

x, y = 4x, and x > 0, y > 0.

Sol:

(a) Method1:

x2 + xy + y2 = (x +
1

2
y)2 +

3

4
y2

Let u = x +
1

2
y, v =

√
3y

2
, x = u − v√

3
, y =

2v√
3

(1 pt)

Preimage of R1 is R′
1 = {(u, v)|u2 + v2 ≤ 1} (1 pt)
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J =

∣∣∣∣∣∣∣∣
1

−1√
3

0
2√
3

∣∣∣∣∣∣∣∣ =
2√
3

(2 pts)

I1 =

∫ ∫
R1

e−(x2+xy+y2) dA =

∫ ∫
R′

1

e−(u2+v2) 2√
3

dudv

=
2√
3

∫ 2π

0

∫ 1

0

e−r2

r drdθ

=
2√
3

∫ 2π

0

1

2
(1 − 1

e
) dθ

=
2√
3
π(1 − 1

e
) (3 pts)

Method2:

Let u =
(x + y)√

2
, v =

−x + y√
2

(1 pt)

x2 + xy + y2 =
3

2
u2 +

1

2
v2 ≤ 1 (1 pt)∫ ∫

R1

e−(x2+xy+y2) dA =

∫ ∫
3
2
u2+ 1

2
v2≤1

e−( 3
2
u2+ 1

2
v2) dudv

=
1√
3

∫ ∫
η2+v2≤2

e−
η2+v2

2 dηdv (2 pts)

=
1√
3

∫ 2π

0

∫ √
2

0

e−
r2

2 r drdθ

=
2√
3
π(1 − 1

e
) (3 pts)

(b) Let u = xy, v =
y

x

x =

√
u

v
, y =

√
uv (1 pt)

Preimage of R2 is R′
2 = {(u, v)|1 ≤ u ≤ 2, 1 ≤ v ≤ 4} (1 pt)

J =

∣∣∣∣∣∣∣
1

2
u

−1
2 v

−1
2

−1

2
u

1
2 v

−3
2

1

2
u

−1
2 v

−1
2

1

2
u

1
2 v

−1
2

∣∣∣∣∣∣∣ =
1

2v
(2 pts)

I2 =

∫ ∫
R2

x2y2dA =

∫ ∫
R2

u2 1

2v
dudv

=
1

2

∫ 4

1

∫ 2

1

u2v−1 dudv

=
1

2

∫ 4

1

7

3
v−1dv =

7

3
ln 2 (3 pts)

5. (18%) Let F(x, y) =
〈 x − y

x2 + y2
,

x + y

x2 + y2

〉
, (x, y) 6= (0, 0), and H = {(x, y)|y > 0} be the upper

half plane.
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(a) Compute J1 =

∫
C

F · dr, where C is the unit circle with counterclockwise orientation. Is

F conservative on R2 \ {(0, 0)}?

(b) Show that

∫
C

F · dr = 0 for any piecewise-smooth simple closed curve C in H.

(c) Suppose that Γ is a piecewise-smooth simple curve in H with initial point P1 = (r1 cos θ1, r1 sin θ1)

and terminal point P2 = (r2 cos θ2, r2 sin θ2), rj > 0, 0 < θj < π, j = 1, 2. Evaluate

J2 =

∫
Γ

F · dr in terms of r1, r2, θ1, and θ2. (Hint. Try a path with constant r in one

piece and constant θ in another piece.)

Sol:

(a) Let r(θ) = (cos θ, sin θ), 0 ≤ θ < 2π, be the parametric equation for C.

J1 =

∫
C
F · dr =

∫ 2π

0

F · r′(θ)dθ =

∫ 2π

0

(cos2 θ + sin2 θ)dθ = 2π 6= 0

Therefore, F is NOT conservative on R2 − {(0, 0)}.

(b) Let C be a piecewise-smooth simple closed curve in H and D be the region bounded by C.

Give C a counterclockwise orientation so that ∂D = C. By Green’s theorem, since D ⊆ H,

on which F is well-defined, and H is simply connected,∫
C
F · dr =

∫∫
D

[
∂

∂x

(
x + y

x2 + y2

)
− ∂

∂y

(
x − y

x2 + y2

)]
dA =

∫∫
D

0dA = 0

(c) It follows from (b) that

∫
C
F · dr is independent of path in H. Thus, to compute

∫
Γ

F · dr,

let C = C1 ∪ C2 be a path connecting P1 and P2.

C1 : r1(t) = (r1 cos t, r1 sin t), t goes from θ1 to θ2

C2 : r2(t) = (t cos θ2, t sin θ2), t goes from r1 to r2

Then it’s easy to see that F(r1(t)) · r′1(t) = 1 and F(r2(t)) · r′2(t) =
1

t
.

∫
Γ

F · dr =

∫
C1∪C2

F · dr =

∫ θ2

θ1

1dt +

∫ r2

r1

1

t
dt = θ2 − θ1 + ln

(
r2

r1

)
= J2

6. (12%) Evaluate I =

∫
C

y2

√
R2 + x2

dx +
[
4x + 2y ln(x +

√
R2 + x2)

]
dy, where C is the upper

semicircle x2 + y2 = R2, y ≥ 0, R > 0, and is traversed from A(−R, 0) to B(R, 0). (Hint.

Apply Green’s Theorem.)
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Sol:

We want to find I, where I is

I =

∫
C

y2

√
R2 + x2

dx + [4x + 2y log(x +
√

R2 + x2)]dy =

∫
C

Pdx + Qdy

Worth 2 pts:

Before we do anything, we must deal with our curve C. In order to use Green’s theorem

we must make sure C satisfies all of the assumptions for the theorem, that is that C is a

positively oriented, piecewise smooth, and simple closed curve. However, C does not satisfy

these assumptions; hence we must make it so a line segment, call L, runs from B(R, 0) to

A(−R, 0). Now we see that CUL is closed and piecewise smooth with clockwise orientation.

Clockwise orientation is not positive orientation, so we will have a negative sign out in front.

Worth 4 pts:

Now note that I = I + J

J being:

J =

∫
L

Pdx + Qdy

Note that for J , dy = 0 ⇒=

∫
L

0dx + Q ∗ 0

Hence J = 0

Worth 2 pts:

Now we can deal with the domain bounded by CUL, which we call D. By Green’s Theorem:

I = I + J

=

∫
CUL

Pdx + Qdy

= −
∫∫
D

(Qx − Py)dA

Worth 2 pts:

Finding Qx and Py: Qx = 4 +
2y√

R2 + x2
, Py =

2y√
R2 + x2

Worth 2 pts:

Plugging the above into I gives: I = −
∫∫
D

4dA = −2πR2

7. (12%) Evaluate

∫∫
S

curlG · dS, where G(x, y, z) = x2yzi + yz2j + z3exyk, S is the part of the
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sphere x2 + y2 + z2 = 5 that lies above the plane z = 1, and S is oriented upward.

Sol:

Let C be the boundary of the surface S.

Then C can be parameterized as (x, y, z) = (2 cos θ, 2 sin θ, 1), 0 ≤ θ ≤ 2π. (4 pts)

G(x, y, z) = (8 sin θ, 2 sin θ, e4 sin θ cos θ), dr = (dx, dy, dz) = (−2 sin θ, 2 cos θ, 0).

By Stoke’s theorem,∫∫
S

curlG · dS =

∫
C
G · dr (4 pts)

=

∫ 2π

0

−16 sin2 θ cos2 θ + 4 sin θ cos θdθ

=

∫ 2π

0

−4 sin2 2θ + 2 sin 2θdθ

= −4π (4 pts)

8. (18%) Let B be the ball centered at the origin with radius ρ0 > 0, and W be the smaller wedge

cut from B by two planes y = 0 and y =
√

3x. The boundary of W consists of 3 surfaces S1,

S2, and S3: ∂W = S1 ∪ S2 ∪ S3, and is given with outward orientation. Here S1 and S2 are

semidisks on y = 0 and y =
√

3x, respectively, and S3 is on the boundary of B, a sphere of

radius ρ0. See the figure. Let H(x, y, z) = xzi + yj − x2k.

(a) Find a parametric representation for the surface S3.

(b) Compute

∫∫
S3

H · dS.

(c) Compute

∫∫
S1∪S2

H · dS. (Hint. Use the Divergence Theorem.)

Sol:

(a) Note that the surface S3 is a piece of the sphere {(x, y, z) : x2 + y2 + z2 = ρ2
0}. The

spherical coordinate works. So let x = ρ0 sin φ cos θ, y = ρ0 sin φ sin θ, and z = ρ0 cos φ.

Notice that θ ∈ [0, π/3] and φ ∈ [0, π]. (2 pts)

The parametric representation is given by

r(θ, φ) = (ρ0 sin φ cos θ, ρ0 sin φ sin θ, ρ0 cos φ), θ ∈ [0, π/3], φ ∈ [0, π]. (2 pts)
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(b) Since S3 is a piece of the sphere, the outward normal of S3 is given by

n(x, y, z) =
(x, y, z)

ρ0

, (x, y, z) ∈ S3.

And H(x, y, z) · n(x, y, z) =
y2

ρ0

. So the integral is given by

∫∫
S3

H · dS =

∫∫
S3

H · ndS =

∫∫
R

y2

ρ0

ρ2
0 sin φdθdφ =

∫ π/3

0

∫ π

0

ρ3
0 sin3 φ sin2 θdφdθ (4 pts)

Here R = [0, π/3] × [0, π]. Note that∫ π/3

0

∫ π

0

ρ3
0 sin3 φ sin2 θdφdθ = ρ3

0

∫ π/3

0

sin2 θdθ

∫ π

0

sin3 φdφ

For the first integral, consider sin2 θ = (1 − cos 2θ)/2.∫ π/3

0

sin2 θdθ =

∫ π/3

0

1 − cos 2θ

2
dθ =

(
θ

2
− 1

4
sin 2θ

)∣∣∣∣π/3

0

=
π

6
−

√
3

8

For the later one, we have∫ π

0

sin3 φdφ = −
∫ π

0

(1 − cos2 φ)d cos φ =

(
1

3
cos3 φ − cos φ

)∣∣∣∣π
0

=
4

3

So ∫∫
S3

H · dS =
4

3
ρ3

0

(
π

6
−

√
3

8

)
(3 pts)

(c) ∇ · H = z + 1. So by divergence theorem,∫∫
S1∪S2

H · dS +

∫∫
S3

H · dS =

∫∫∫
E

∇ · HdV =

∫∫∫
E

(z + 1)dV, (4 pts)

where E is the solid bounded by S1 ∪ S2 ∪ S3. Firstly, note that E is symmetric with

respect to xy-plane. Therefore, ∫∫∫
E

zdV = 0

So ∫∫∫
E

(z + 1)dV =

∫∫∫
E

dV =
4

3
πρ3

0

π/3

2π
=

2

9
πρ3

0 (3 pts)

since the volume of E is equal to the volume of the sphere times
π/3

2π
= 1/6. Now

∫∫
S1∪S2

H · dS =

∫∫∫
E

∇ · HdV −
∫∫
S3

H · dS =
2

9
πρ3

0 −
4

3
ρ3

0

(
π

6
−

√
3

8

)
=

√
3

6
ρ3

0
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