Section 7.8 Improper Integrals

68. Improper Integrals that Are Both Type 1 and Type 2
The integral f;o f(x)dx is improper because the interval [a,c0) is infinite. If f has an infinite discontinuity at a,
then the integral is improper for a second reason. In this case we evaluate the integral by expressing it as a sum of

improper integral of Type 2and Type 1 as follows:

/aoo f(z)dx = /acf(x)dm—&-/:o f(x)dz c¢>a

Evaluate the given integral if it is convergent.
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70. Find the values of p for which the integral converges and evaluate the integral for those values of p.
Solution:
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Letu = Inz. Then du = dz/z = T_ 1 dr = T du By Example 4, this converges to
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diverges otherwise.

74. The average speed of molecules in an ideal gas is
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where M is the molecular weight of the gas, R is the gas constant, T' is the gas temperature, and v is the molecular

speed. Show that
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75. We know from Example 1 that the region R = {(z,y)|z > 1,0 <y < 1/z} has infinite area. Show that by rotating

R about the z-axis we obtain a solid with finite volume.

Solution:
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Volume:/ w(l) dxr =7 lim d—f = lim {—l} =7 lim (1—1) =7 < o0.
1 x t—oo [1 T t—o0 €T t—oo t

1

80. As we saw in Section 3.8, a radioactive substance decays exponentially: The mass at time ¢ is m(t) = m(0)e

b

where m(0) is the initial mass and k is a negative constant. The mean life M of an atom in the substance is
o0
M= —k / tektat
0

For the radioactive carbon isotope, C, used in radiocarbon dating, the value of k is —0.000121. Find the mean

life of a *C atom.
Solution:

1= /0 te"t dt = Sllngo |:% (kt—1) 6kt:| . [Formula 96, or parts] = SILIEO [(%Seks - k—126k5> - (7%)} .

Since k£ < 0 the first two terms approach 0 (you can verify that the first term does so with I’Hospital’s Rule), so the limit is

equal to 1/k*. Thus, M = —kI = —k(1/k*) = —1/k = —1/(—0.000121) ~ 8264.5 years.

89. Show that [, a2 de = L [* e " da.
We use integration by parts: let u = z, dv = re T dr = du— dz, v = _%efﬁ. So
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(The limit is 0 by I’Hospital’s Rule.)

92. Find the value of the constant C' for which the integral
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converges. Evaluate the integral for this value of C.

Solution:
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For C' < 0, the integral diverges. For C' > 0, we have
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ForC/3<1 & C <3,L=o0and ] diverges.
ForC=3,L=12%and] =In4%.

For C > 3, L = 0 and I diverges to —oo.



