
Section 3.5 Implicit Differentiation

44. If x2 + xy + y3 = 1, find the value of y′′′ at the point where x = 1.

Solution:

216 ¤ CHAPTER 3 DIFFERENTIATION RULES

37. sin  + cos = 1 ⇒ cos  · 0 − sin = 0 ⇒ 0 =
sin

cos 
⇒

00 =
cos  cos− sin(− sin ) 0

(cos )2
=

cos  cos+ sin sin (sin cos )

cos2 

=
cos2  cos+ sin2  sin 

cos2  cos 
=

cos2  cos+ sin2  sin 

cos3 

Using sin  + cos = 1, the expression for 00 can be simplified to 00 = (cos2 + sin ) cos3 

38. 3 − 3 = 7 ⇒ 32 − 320 = 0 ⇒ 0 =
2

2
⇒

00 =
2(2)− 2(2 0)

(2)2
=

2[ − (22)]

4
=

2( − 32)

3
=

2(3 − 3)

32
=

2(−7)

5
=
−14

5

39. If  = 0 in  +  = , then we get 0 +  = , so  = 1 and the point where  = 0 is (0 1). Differentiating implicitly

with respect to  gives us 0 +  · 1 + 0 = 0. Substituting 0 for  and 1 for  gives us

0 + 1 + 0 = 0 ⇒ 0 = −1 ⇒ 0 = −1. Differentiating 0 +  + 0 = 0 implicitly with respect to  gives

us 00 + 0 · 1 + 0 + 00 + 0 · 0 = 0. Now substitute 0 for , 1 for , and −1 for 0.

0 +


−1




+


−1




+ 00 +


−1




()


−1




= 0 ⇒ −2


+ 00 +

1


= 0 ⇒ 00 =

1


⇒ 00 =

1

2
.

40. If  = 1 in 2 + + 3 = 1, then we get 1 + + 3 = 1 ⇒ 3 +  = 0 ⇒ (2 + 1) ⇒  = 0, so the point

where  = 1 is (1 0). Differentiating implicitly with respect to  gives us 2+ 0 +  · 1 + 32 · 0 = 0. Substituting 1 for

 and 0 for  gives us 2 + 0 + 0 + 0 = 0 ⇒ 0 = −2. Differentiating 2+ 0 +  + 320 = 0 implicitly with respect

to  gives us 2 + 00 + 0 · 1 + 0 + 3(200 + 0 · 20) = 0. Now substitute 1 for , 0 for , and −2 for 0.

2 + 00 + (−2) + (−2) + 3(0 + 0) = 0 ⇒ 00 = 2. Differentiating 2 + 00 + 20 + 3200 + 6(0)2 = 0 implicitly

with respect to  gives us 000 + 00 · 1 + 200 + 3(2000 + 00 · 20) + 6[ · 2000 + (0)20] = 0. Now substitute 1 for ,

0 for , −2 for 0, and 2 for 00. 000 + 2 + 4 + 3(0 + 0) + 6[0 + (−8)] = 0 ⇒ 000 = −2− 4 + 48 = 42.

41. (a) There are eight points with horizontal tangents: four at  ≈ 157735 and

four at  ≈ 042265.

(b) 0 =
32 − 6+ 2

2(23 − 32 −  + 1)
⇒ 0 = −1 at (0 1) and 0 = 1

3
at (0 2).

Equations of the tangent lines are  = −+ 1 and  = 1
3
+ 2.

(c) 0 = 0 ⇒ 32 − 6+ 2 = 0 ⇒  = 1± 1
3

√
3

(d) By multiplying the right side of the equation by − 3, we obtain the first

graph. By modifying the equation in other ways, we can generate the other

graphs.

(2 − 1)( − 2)

= (− 1)(− 2)(− 3)
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48. Show by implicit differentiation that the tangent line to the ellipse

x2

a2
+

y2

b2
= 1

at the point (x0, y0) has equation
x0x

a2
+

y0y

b2
= 1

Solution:

SECTION 3.5 IMPLICITLY DEFINED FUNCTIONS ¤ 233

46. (a) (b) 


(23 + 2 − 5) =




(4 − 23 + 2) ⇒

620 + 2 0 − 540 = 43 − 62 + 2 ⇒

0 =
2(22 − 3+ 1)
62 + 2 − 54 =

2(2− 1)(− 1)
(6 + 2− 53) . From the graph and the

values for which 0 = 0, we speculate that there are 9 points with horizontal

tangents: 3 at  = 0, 3 at  = 1
2
, and 3 at  = 1. The three horizontal

tangents along the top of the wagon are hard to find, but by limiting the

­range of the graph (to [16 17], for example) they are distinguishable.

47. From Exercise 35, a tangent to the lemniscate will be horizontal if 0 = 0 ⇒ 25− 4(2 + 2) = 0 ⇒

[25− 4(2 + 2)] = 0 ⇒ 2 + 2 = 25
4
(1). (Note that when  is 0,  is also 0, and there is no horizontal tangent

at the origin.) Substituting 25
4
for 2 + 2 in the equation of the lemniscate, 2(2 + 2)2 = 25(2 − 2), we get

2 − 2 = 25
8
(2). Solving (1) and (2), we have 2 = 75

16
and 2 = 25

16
, so the four points are


± 5

√
3

4
± 5

4


.

48.
2

2
+

2

2
= 1 ⇒ 2

2
+
20

2
= 0 ⇒ 0 = − 2

2
⇒ an equation of the tangent line at (0 0) is

 − 0 =
−20
20

(− 0). Multiplying both sides by
0

2
gives 0

2
− 20

2
= −0

2
+

20
2
. Since (0 0) lies on the ellipse,

we have 0
2

+
0

2
=

20
2
+

20
2
= 1.

49.
2

2
− 2

2
= 1 ⇒ 2

2
− 20

2
= 0 ⇒ 0 =

2

2
⇒ an equation of the tangent line at (0 0) is

 − 0 =
20

20
(− 0). Multiplying both sides by

0

2
gives 0

2
− 20

2
=

0

2
− 20

2
. Since (0 0) lies on the hyperbola,

we have 0
2

− 0

2
=

20
2
− 20

2
= 1.

50.
√
+


 =

√
 ⇒ 1

2
√

+

0

2


= 0 ⇒ 0 = −


√


⇒ an equation of the tangent line at (0 0)

is  − 0 = −

0√
0
(− 0). Now  = 0 ⇒  = 0 −


0√
0
(−0) = 0 +

√
0

0, so the ­intercept is

0 +
√
0

0. And  = 0 ⇒ −0 = −


0√
0
(− 0) ⇒ − 0 =

0
√
0
0

⇒  = 0 +
√
0

0,

so the ­intercept is 0 +
√
0

0. The sum of the intercepts is

0 +
√
0

0


+

0 +

√
0

0


= 0 + 2

√
0

0 + 0 =

√
0 +


0

2
=
√


2
= .
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65. Use implicit differentiation to find dy/dx for the equation

x

y
= y2 + 1 y ̸= 0

and for the equivalent equation

x = y3 + y y ̸= 0

Show that although the expressions you get for dy/dx look different, they agree for all points that satisfy the given

equation.

Solution:

SECTION 3.5 IMPLICIT DIFFERENTIATION ¤ 237

64. 2 + 42 = 36 ⇒ 2+ 80 = 0 ⇒ 0 = − 

4
. Let ( ) be a point on 2 + 42 = 36 whose tangent line passes

through (12 3). The tangent line is then  − 3 = − 

4
(− 12), so − 3 = − 

4
(− 12). Multiplying both sides by 4

gives 42 − 12 = −2 + 12, so 42 + 2 = 12(+ ). But 42 + 2 = 36, so 36 = 12(+ ) ⇒ +  = 3 ⇒
 = 3− . Substituting 3−  for  into 2 + 42 = 36 gives 2 + 4(3− )2 = 36 ⇔ 2 + 36− 24+ 42 = 36 ⇔
52 − 24 = 0 ⇔ (5− 24) = 0, so  = 0 or  = 24

5
. If  = 0,  = 3− 0 = 3, and if  = 24

5
,  = 3− 24

5
= − 9

5
.

So the two points on the ellipse are (0 3) and

24
5
− 9

5


. Using

 − 3 = − 

4
(− 12) with ( ) = (0 3) gives us the tangent line

 − 3 = 0 or  = 3. With ( ) =  24
5 − 9

5


, we have

 − 3 = − 245
4(−95) (− 12) ⇔  − 3 = 2

3
(− 12) ⇔  = 2

3
− 5.

A graph of the ellipse and the tangent lines confirms our results.

65. For 

= 2 + 1,  6= 0, we have 









=




(2 + 1) ⇒  · 1−  · 0

2
= 2 0 ⇒  − 0 = 23 0 ⇒

23 0 +  0 =  ⇒ 0 (23 + ) =  ⇒ 0 =


23 + 
.

For  = 3 + ,  6= 0, we have 


() =




(3 + ) ⇒ 1 = 320 + 0 ⇒ 1 = 0 (32 + 1) ⇒

0 =
1

32 + 1
.

From part (a), 0 = 

23 + 
. Since  6= 0, we substitute 3 +  for  to get



23 + 
=



23 + (3 + )
=



33 + 
=



(32 + 1)
=

1

32 + 1
, which agrees with part (b).

66. (a)  = () and 00 + 0 +  = 0 ⇒  00() +  0() + () = 0. If  = 0, we have 0 +  0(0) + 0 = 0,

so  0(0) = 0.

(b) Differentiating 00 + 0 +  = 0 implicitly, we get 000 + 00 · 1 + 00 + 0 +  · 1 = 0 ⇒
000 + 200 + 0 +  = 0, so  000() + 2 00() +  0() + () = 0. If  = 0, we have

0 + 2 00(0) + 0 + 1 [(0) = 1 is given] = 0 ⇒ 2 00(0) = −1 ⇒  00(0) = − 1
2
.

67. 2 + 42 = 5 ⇒ 2+ 4(20) = 0 ⇒ 0 = − 

4
. Now let  be the height of the lamp, and let ( ) be the point of

tangency of the line passing through the points (3 ) and (−5 0). This line has slope (− 0)[3− (−5)] = 1
8
. But the

slope of the tangent line through the point ( ) can be expressed as 0 = − 

4
, or as − 0

− (−5) =


+ 5
[since the line

passes through (−5 0) and ( )], so − 

4
=



+ 5
⇔ 42 = −2 − 5 ⇔ 2 + 42 = −5. But 2 + 42 = 5
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66. The Bessel function of order 0, y = J(x), satisfies the differential equation xy′′ + y′ + xy = 0 for all values of x and

its value at 0 is J(0) = 1.

(a) Find J ′(0).

(b) Use implicit differentiation to find J ′′(0).

Solution:

224 ¤ CHAPTER 3 DIFFERENTIATION RULES

77. (a) If  = −1(), then () = . Differentiating implicitly with respect to  and remembering that  is a function of ,

we get  0()



= 1, so




=

1

 0()
⇒ 

−1
0

() =
1

 0(−1())
.

(b) (4) = 5 ⇒ −1(5) = 4. By part (a),

−1

0
(5) =

1

 0(−1(5))
=

1

 0(4)
= 1


2
3


= 3

2
.

78. (a) Assume   . Since  is an increasing function,   , and hence, +   + ; that is, ()  ()

So () = +  is an increasing function and therefore one-to-one.

(b) −1(1) =  ⇔ () = 1, so we need to find  such that () = 1. By inspection, we see that (0) = 0 + 0 = 1, so

 = 0, and hence, −1(1) = 0.

(c) (−1)0(1) =
1

 0(−1(1))
=

1

 0(0)
[by part (b)]. Now () = +  ⇒  0() = 1 + , so  0(0) = 1 + 0 = 2.

Thus, (−1)0(1) = 1
2
.

79. (a)  = () and 00 + 0 +  = 0 ⇒  00() +  0() + () = 0. If  = 0, we have 0 +  0(0) + 0 = 0,

so  0(0) = 0.

(b) Differentiating 00 + 0 +  = 0 implicitly, we get 000 + 00 · 1 + 00 + 0 +  · 1 = 0 ⇒
000 + 200 + 0 +  = 0, so  000() + 2 00() +  0() + () = 0. If  = 0, we have

0 + 2 00(0) + 0 + 1 [(0) = 1 is given] = 0 ⇒ 2 00(0) = −1 ⇒  00(0) = − 1
2
.

80. 2 + 42 = 5 ⇒ 2+ 4(20) = 0 ⇒ 0 = − 

4
. Now let  be the height of the lamp, and let ( ) be the point of

tangency of the line passing through the points (3 ) and (−5 0). This line has slope (− 0)[3− (−5)] = 1
8
. But the

slope of the tangent line through the point ( ) can be expressed as 0 = − 

4
, or as

− 0

− (−5)
=



+ 5
[since the line

passes through (−5 0) and ( )], so − 

4
=



+ 5
⇔ 42 = −2 − 5 ⇔ 2 + 42 = −5. But 2 + 42 = 5

[since ( ) is on the ellipse], so 5 = −5 ⇔  = −1. Then 42 = −2 − 5 = −1− 5(−1) = 4 ⇒  = 1, since the

point is on the top half of the ellipse. So


8
=



+ 5
=

1

−1 + 5
=

1

4
⇒  = 2. So the lamp is located 2 units above the

-axis.

LABORATORY PROJECT Families of Implicit Curves

1. (a) There appear to be nine points of intersection. The “inner four” near the origin are about (±02−09) and (±03−11).

The “outer five” are about (20−89), (−28−88), (−75−77), (−78−47), and (−80 15).
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67. The figure shows a lamp located three units to the right of the y-axis and a shadow created by the elliptical region

x2 + 4y2 ≤ 5. If the point (−5, 0) is on the edge of the shadow, how far above the x-axis is the lamp located?

	 Laboratory Project    Families of Implicit Curves	 217

	 (b)	� Illustrate part (a) by graphing the ellipse and the normal 
line.

	75.	�� Find all points on the curve x 2 y 2 1 xy − 2 where the slope 
of the tangent line is 21.

	76.	� �Find equations of both the tangent lines to the ellipse 
x 2 1 4y 2 − 36 that pass through the point s12, 3d.

	77.	� (a)	� Suppose f  is a one-to-one differentiable function and its 
inverse function f 21 is also differentiable. Use implicit 
differentiation to show that

s f 21d9sxd −
1

 f 9s f 21sxdd

		  provided that the denominator is not 0.
	 (b)	 If f s4d − 5 and f 9s4d − 2

3, find s f 21d9s5d.

	78.	� (a)	� Show that f sxd − x 1 e x is one-to-one.
	 (b)	 What is the value of f 21s1d?
	 (c)	� Use the formula from Exercise 77(a) to find s f 21d9s1d.

	79.	� �The Bessel function of order 0, y − J sxd, satisfies the 
differential equation xy99 1 y9 1 xy − 0 for all values of x 
and its value at 0 is J s0d − 1.

	 (a)	� Find J9s0d.
	 (b)	� Use implicit differentiation to find J99s0d.

	80.	�� The figure shows a lamp located three units to the right of  
the y-axis and a shadow created by the elliptical region 
x 2 1 4y 2 < 5. If the point s25, 0d is on the edge of the 
shadow, how far above the x-axis is the lamp located?

?

x

y

30_5
≈+4¥=5

;	69.	� �Show that the ellipse x 2ya 2 1 y 2yb 2 − 1 and the hyperbola 
x 2yA2 2 y 2yB 2 − 1 are orthogonal trajectories if A2 , a 2 
and a 2 2 b 2 − A2 1 B 2 (so the ellipse and hyperbola have 
the same foci).

	70.	�� Find the value of the number a such that the families of 
curves y − sx 1 cd21 and y − asx 1 kd1y3 are orthogonal 
trajectories.

	71.	� (a)	� The van der Waals equation for n moles of a gas is

SP 1
n 2a

V 2 DsV 2 nbd − nRT

		�  where P is the pressure, V is the volume, and T is the 
temperature of the gas. The constant R is the universal 
gas constant and a and b are positive constants that are 
characteristic of a particular gas. If T remains constant, 
use implicit differentiation to find dVydP.

	 (b)	� Find the rate of change of volume with respect to 
pressure of 1 mole of carbon dioxide at a volume 
of V − 10 L and a pressure of P − 2.5 atm. Use 
a − 3.592 L2-atmymole2 and b − 0.04267 Lymole.

	72.	� (a)	� Use implicit differentiation to find y9 if

x 2 1 xy 1 y 2 1 1 − 0

	 (b)	� Plot the curve in part (a). What do you see? Prove that 
what you see is correct.

	 (c)	� In view of part (b), what can you say about the  
expression for y9 that you found in part (a)?

	73.	�� The equation x 2 2 xy 1 y 2 − 3 represents a “rotated 
ellipse,” that is, an ellipse whose axes are not parallel to the 
coordinate axes. Find the points at which this ellipse crosses 
the x-axis and show that the tangent lines at these points are 
parallel.

	74.	� (a)	� Where does the normal line to the ellipse 
x 2 2 xy 1 y 2 − 3 at the point s21, 1d intersect the 
ellipse a second time? 

CAS

laboratory Project	 CAS   Families of implicit curves

In this project you will explore the changing shapes of implicitly defined curves as you vary the 
constants in a family, and determine which features are common to all members of the family.

1.	� Consider the family of curves

y 2 2 2x 2sx 1 8d − cfsy 1 1d2sy 1 9d 2 x 2g

	 (a)	� By graphing the curves with c − 0 and c − 2, determine how many points of inter-
section there are. (You might have to zoom in to find all of them.)

	 (b)	� Now add the curves with c − 5 and c − 10 to your graphs in part (a). What do you 
notice? What about other values of c?
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77. (a) If  = −1(), then () = . Differentiating implicitly with respect to  and remembering that  is a function of ,

we get  0()



= 1, so




=

1

 0()
⇒ 

−1
0

() =
1

 0(−1())
.

(b) (4) = 5 ⇒ −1(5) = 4. By part (a),

−1

0
(5) =

1

 0(−1(5))
=

1

 0(4)
= 1


2
3


= 3

2
.

78. (a) Assume   . Since  is an increasing function,   , and hence, +   + ; that is, ()  ()

So () = +  is an increasing function and therefore one-to-one.

(b) −1(1) =  ⇔ () = 1, so we need to find  such that () = 1. By inspection, we see that (0) = 0 + 0 = 1, so

 = 0, and hence, −1(1) = 0.

(c) (−1)0(1) =
1

 0(−1(1))
=

1

 0(0)
[by part (b)]. Now () = +  ⇒  0() = 1 + , so  0(0) = 1 + 0 = 2.

Thus, (−1)0(1) = 1
2
.

79. (a)  = () and 00 + 0 +  = 0 ⇒  00() +  0() + () = 0. If  = 0, we have 0 +  0(0) + 0 = 0,

so  0(0) = 0.

(b) Differentiating 00 + 0 +  = 0 implicitly, we get 000 + 00 · 1 + 00 + 0 +  · 1 = 0 ⇒
000 + 200 + 0 +  = 0, so  000() + 2 00() +  0() + () = 0. If  = 0, we have

0 + 2 00(0) + 0 + 1 [(0) = 1 is given] = 0 ⇒ 2 00(0) = −1 ⇒  00(0) = − 1
2
.

80. 2 + 42 = 5 ⇒ 2+ 4(20) = 0 ⇒ 0 = − 

4
. Now let  be the height of the lamp, and let ( ) be the point of

tangency of the line passing through the points (3 ) and (−5 0). This line has slope (− 0)[3− (−5)] = 1
8
. But the

slope of the tangent line through the point ( ) can be expressed as 0 = − 

4
, or as

− 0

− (−5)
=



+ 5
[since the line

passes through (−5 0) and ( )], so − 

4
=



+ 5
⇔ 42 = −2 − 5 ⇔ 2 + 42 = −5. But 2 + 42 = 5

[since ( ) is on the ellipse], so 5 = −5 ⇔  = −1. Then 42 = −2 − 5 = −1− 5(−1) = 4 ⇒  = 1, since the

point is on the top half of the ellipse. So


8
=



+ 5
=

1

−1 + 5
=

1

4
⇒  = 2. So the lamp is located 2 units above the

-axis.

LABORATORY PROJECT Families of Implicit Curves

1. (a) There appear to be nine points of intersection. The “inner four” near the origin are about (±02−09) and (±03−11).

The “outer five” are about (20−89), (−28−88), (−75−77), (−78−47), and (−80 15).
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