
Section 2.3 Calculating Limits Using the Limit Laws

2. The graphs of f and g are given. Use them to evaluate each limit, if it exists. If the limit does not exist, explain

why.

(a) lim
x→2

[f(x)+ g(x)] (b) lim
x→0

[f(x)− g(x)] (c) lim
x→−1

[f(x)g(x)] (d) lim
x→3

f(x)
g(x) (e) lim

x→2
[x2f(x)] (f) f(−1)+ lim

x→−1
g(x)
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 4. lim
xl 21

 sx 4 2 3xdsx 2 1 5x 1 3d

 5. lim
t l 22

 
t 4 2 2

2t 2 2 3t 1 2
 6. lim

ul
 

22
 su 4 1 3u 1 6 

 7. lim
x l 8

 s1 1 s3 x ds2 2 6x 2 1 x 3d 8. lim
t l 2

 S t 2 2 2

t 3 2 3t 1 5D
2

 9. lim
x l 2

 Î 2x 2 1 1

3x 2 2
 

 1�0�. (a) What is wrong with the following equation?

x 2 1 x 2 6

x 2 2
− x 1 3

 (b) In view of part (a), explain why the equation

lim
x l

 

2
 
x 2 1 x 2 6

x 2 2
− lim

x l
 

2
 sx 1 3d

is correct.

1�1�–3�2� Evaluate the limit, if it exists.

 1�1�. lim
x l

 

5
 
x 2 2 6x 1 5

x 2 5
 1�2�. lim

x l
 

23
 

x 2 1 3x

x 2 2 x 2 12
  

 1�3�. lim
x l

 

5
 
x 2 2 5x 1 6

x 2 5
 1�4. lim

x l
 

4
 

x 2 1 3x

x 2 2 x 2 12

 1�5. lim
t l

 

23
 

t 2 2 9

2t 2 1 7t 1 3
 1�6. lim

x l
 

21
 
2x 2 1 3x 1 1

x 2 2 2x 2 3

 1�7. lim
h l

 

0
 
s25 1 hd2 2 25

h
 1�8. lim

h l
 

0
 
s2 1 hd3 2 8

h

 1�.  Given that

lim
x l

 

2
 f sxd − 4   lim

x l
 

2
 tsxd − 22   lim

x l
 

2
 hsxd − 0

   find the limits that exist. If the limit does not exist, explain why.

 (a) lim
x l

 

2
 f f sxd 1 5tsxdg (b) lim

x l
 

2
 ftsxdg3

 (c) lim
x l 2

 sf sxd  (d) lim
x l

 

2
 
3f sxd
tsxd

 (e) lim
x l

 

2
 
tsxd
hsxd

 (f ) lim
x l

 

2
 
tsxdhsxd

f sxd

 2�.  The graphs of f  and t are given. Use them to evaluate each 
limit, if it exists. If the limit does not exist, explain why.

 (a) lim
x l

 

2
 f f sxd 1 tsxdg (b) lim

x l
 

0
 f f sxd 2 tsxdg

 (c) lim
x l

 

21
 f f sxdtsxdg (d) lim

x l
 

3
 

f sxd
tsxd

 (e) lim
x l

 

2
 fx 2 f sxdg (f ) f s21d 1 lim

x l
 

21
 tsxd

y=©

0 1

1

y=ƒ

0 1

1

y y

x x

 3�–9 Evaluate the limit and justify each step by indicating the 
appropriate Limit Law(s).

 3�. lim
x l

 

3
 s5x 3 2 3x 2 1 x 2 6d

any number lies between 21 and 1, we can write.

4   21 < sin 
1

x
< 1

Any inequality remains true when multiplied by a positive number. We know that 
x 2 > 0 for all x and so, multiplying each side of the inequalities in (4) by x 2, we get

2x 2 < x 2 sin 
1

x
< x 2

as illustrated by Figure 8. We know that

lim
x l 0

 x 2 − 0    and    lim
x l 0

 s2x 2 d − 0

Taking f sxd − 2x 2, tsxd − x 2 sins1yxd, and hsxd − x 2 in the Squeeze Theorem, we 
obtain

 lim
x l 0

 x 2 sin 
1

x
− 0 ■

y=≈

y=_≈

0 x

y

FIGURE 8 
y − x 2 sins1yxd
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Solution:
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(c) lim
→2


() =


lim
→2

() [Limit Law 11]

=
√

4 = 2

(d) lim
→2

3()

()
=

lim
→2

[3()]

lim
→2

()
[Limit Law 5]

=
3 lim
→2

()

lim
→2

()
[Limit Law 3]

=
3(4)

−2
= −6

(e) Because the limit of the denominator is 0, we can’t use Limit Law 5. The given limit, lim
→2

()

()
, does not exist because the

denominator approaches 0 while the numerator approaches a nonzero number.

(f) lim
→2

()()

()
=

lim
→2

[()()]

lim
→2

()
[Limit Law 5]

=
lim
→2

() · lim
→2

()

lim
→2

()
[Limit Law 4]

=
−2 · 0

4
= 0

2. (a) lim
→2

[() + ()] = lim
→2

() + lim
→2

() [Limit Law 1]

= −1 + 2

= 1

(b) lim
→0

() exists, but lim
→0

() does not exist, so we cannot apply Limit Law 2 to lim
→0

[()− ()].

The limit does not exist.

(c) lim
→−1

[() ()] = lim
→−1

() · lim
→−1

() [Limit Law 4]

= 1 · 2
= 2

(d) lim
→3

() = 1, but lim
→3

() = 0, so we cannot apply Limit Law 5 to lim
→3

()

()
. The limit does not exist.

Note: lim
→3−

()

()
=∞ since ()→ 0+ as → 3− and lim

→3+

()

()
= −∞ since ()→ 0−as → 3+.

Therefore, the limit does not exist, even as an infinite limit.

(e) lim
→2


2()


= lim

→2
2 · lim

→2
() [Limit Law 4]

= 22 · (−1)

= −4

(f) (−1) + lim
→−1

() is undefined since (−1) is

not defined.

3. lim
→−2

(34 + 22 −  + 1) = lim
→−2

34 + lim
→−2

22 − lim
→−2

 + lim
→−2

1 [Limit Laws 1 and 2]

= 3 lim
→−2

4 + 2 lim
→−2

2 − lim
→−2

+ lim
→−2

1 [3]

= 3(−2)4 + 2(−2)2 − (−2) + (1) [9, 8, and 7]

= 48 + 8 + 2 + 1 = 59
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34. Evaluate the limit, if it exists. lim
h→0

1
(x+h)2

− 1
x2

h

Solution:
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29. lim
→0


1


√

1 + 
− 1




= lim

→0

1−√1 + 


√

1 + 
= lim

→0


1−√1 + 


1 +

√
1 + 



√
+ 1


1 +

√
1 + 

 = lim
→0

−

√

1 + 

1 +

√
1 + 


= lim

→0

−1√
1 + 


1 +

√
1 + 

 =
−1√

1 + 0

1 +

√
1 + 0

 = −1

2

30. lim
→−4

√
2 + 9− 5

+ 4
= lim

→−4

√
2 + 9− 5

√
2 + 9 + 5


(+ 4)

√
2 + 9 + 5

 = lim
→−4

(2 + 9)− 25

(+ 4)
√

2 + 9 + 5


= lim
→−4

2 − 16

(+ 4)
√

2 + 9 + 5
 = lim

→−4

(+ 4)(− 4)

(+ 4)
√

2 + 9 + 5


= lim
→−4

− 4√
2 + 9 + 5

=
−4− 4√
16 + 9 + 5

=
−8

5 + 5
= −4

5

31. lim
→0

(+ )3 − 3


= lim

→0

(3 + 32+ 32 + 3)− 3


= lim

→0

32+ 32 + 3



= lim
→0

(32 + 3+ 2)


= lim

→0
(32 + 3+ 2) = 32

32. lim
→0

1

(+ )2
− 1

2


= lim

→0

2 − (+ )2

(+ )22


= lim

→0

2 − (2 + 2+ 2)

2(+ )2
= lim

→0

−(2+ )

2(+ )2

= lim
→0

−(2+ )

2( + )2
=

−2

2 · 2
= − 2

3

33. (a)

lim
→0

√
1 + 3− 1

≈ 2

3

(b)
 ()

−0001 0666 166 3

−0000 1 0666 616 7

−0000 01 0666 661 7

−0000 001 0666 666 2

0000 001 0666 667 2

0000 01 0666 671 7

0000 1 0666 716 7

0001 0667 166 3

The limit appears to be
2

3
.

(c) lim
→0


√

1 + 3− 1
·
√

1 + 3+ 1√
1 + 3+ 1


= lim

→0


√

1 + 3+ 1


(1 + 3)− 1
= lim

→0


√

1 + 3+ 1


3

=
1

3
lim
→0

√
1 + 3+ 1


[Limit Law 3]

=
1

3


lim
→0

(1 + 3) + lim
→0

1


[1 and 11]

=
1

3


lim
→0

1 + 3 lim
→0

+ 1


[1, 3, and 7]

=
1

3

√
1 + 3 · 0 + 1


[7 and 8]

=
1

3
(1 + 1) =

2

3
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42. Prove that lim
x→0+

√
xesin(π/x) = 0.

Solution:
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38. Let () = −√3 + 2, () =
√
3 + 2 sin(), and () =

√
3 + 2. Then

−1 ≤ sin() ≤ 1 ⇒ −√3 + 2 ≤ √3 + 2 sin() ≤ √3 + 2 ⇒
() ≤ () ≤ (). So since lim

→0
() = lim

→0
() = 0, by the Squeeze Theorem

we have lim
→0

() = 0.

39. We have lim
→4

(4− 9) = 4(4)− 9 = 7 and lim
→4


2 − 4+ 7 = 42 − 4(4) + 7 = 7. Since 4− 9 ≤ () ≤ 2 − 4+ 7

for  ≥ 0, lim
→4

() = 7 by the Squeeze Theorem.

40. We have lim
→1

(2) = 2(1) = 2 and lim
→1

(4 − 2 + 2) = 14 − 12 + 2 = 2. Since 2 ≤ () ≤ 4 − 2 + 2 for all ,

lim
→1

() = 2 by the Squeeze Theorem.

41. −1 ≤ cos(2) ≤ 1 ⇒ −4 ≤ 4 cos(2) ≤ 4. Since lim
→0

−4 = 0 and lim
→0

4 = 0, we have

lim
→0


4 cos(2)


= 0 by the Squeeze Theorem.

42. −1 ≤ sin() ≤ 1 ⇒ −1 ≤ sin() ≤ 1 ⇒ √
/ ≤ √ sin() ≤ √. Since lim

→0+
(
√
/) = 0 and

lim
→0+

(
√
 ) = 0, we have lim

→0+

√
 sin()


= 0 by the Squeeze Theorem.

43. |+ 4| =

+ 4 if + 4 ≥ 0
−(+ 4) if + 4  0

=


+ 4 if  ≥ −4
−(+ 4) if   −4

Thus, lim
→−4+

(|+ 4|− 2) = lim
→−4+

(+ 4− 2) = lim
→−4+

(−+ 4) = 4 + 4 = 8 and

lim
→−4−

(|+ 4|− 2) = lim
→−4−

(−(+ 4)− 2) = lim
→−4−

(−3− 4) = 12− 4 = 8.

The left and right limits are equal, so lim
→−4

(|+ 4|− 2) = 8.

44. |+ 4| =

+ 4 if + 4 ≥ 0
−(+ 4) if + 4  0

=


+ 4 if  ≥ −4
−(+ 4) if   −4

Thus, lim
→−4+

|+ 4|
2+ 8

= lim
→−4+

+ 4

2+ 8
= lim

→−4+
+ 4

2(+ 4)
= lim

→−4+
1

2
=
1

2
and

lim
→−4−

|+ 4|
2+ 8

= lim
→−4−

−(+ 4)
2+ 8

= lim
→−4−

−(+ 4)
2(+ 4)

= lim
→−4−

−1
2
= −1

2
.

The left and right limits are different, so lim
→−4

|+ 4|
2+ 8

does not exist.

45.
23 − 2

 = 2(2− 1) = 2 · |2− 1| = 2 |2− 1|

|2− 1| =

2− 1 if 2− 1 ≥ 0
−(2− 1) if 2− 1  0 =


2− 1 if  ≥ 05
−(2− 1) if   05

So
23 − 2

 = 2[−(2− 1)] for   05.

Thus, lim
→05−

2− 1
|23 − 2| = lim

→05−
2− 1

2[−(2− 1)] = lim
→05−

−1
2

=
−1
(05)2

=
−1
025

= −4.
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54. Let

g(x) =



x if x < 1

3 if x = 1

2− x2 if 1 < x ≤ 2

x− 3 if x > 2

(a) Evaluate each of the following, if it exists. (i) lim
x→1−

g(x) (ii) lim
x→1

g(x) (iii) g(1) (iv) lim
x→2−

g(x) (v) lim
x→2+

g(x) (vi)

lim
x→2

g(x)

(b) Sketch the graph of g.

Solution:
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51. For the lim
→2

() to exist, the one-sided limits at  = 2 must be equal. lim
→2−

() = lim
→2−


4− 1

2



= 4− 1 = 3 and

lim
→2+

() = lim
→2+

√
 +  =

√
2 + . Now 3 =

√
2 +  ⇒ 9 = 2 +  ⇔  = 7.

52. (a) (i) lim
→1−

() = lim
→1−

 = 1

(ii) lim
→1+

() = lim
→1+

(2− 2) = 2− 12 = 1. Since lim
→1−

() = 1 and lim
→1+

() = 1, we have lim
→1

() = 1.

Note that the fact (1) = 3 does not affect the value of the limit.

(iii) When  = 1, () = 3, so (1) = 3.

(iv) lim
→2−

() = lim
→2−

(2− 2) = 2− 22 = 2− 4 = −2

(v) lim
→2+

() = lim
→2+

(− 3) = 2− 3 = −1

(vi) lim
→2

() does not exist since lim
→2−

() 6= lim
→2+

().

(b)

() =


 if   1

3 if  = 1

2− 2 if 1   ≤ 2

− 3 if   2

53. (a) (i) [[]] = −2 for −2 ≤   −1, so lim
→−2+

[[]] = lim
→−2+

(−2) = −2

(ii) [[]] = −3 for −3 ≤   −2, so lim
→−2−

[[]] = lim
→−2−

(−3) = −3.

The right and left limits are different, so lim
→−2

[[]] does not exist.

(iii) [[]] = −3 for −3 ≤   −2, so lim
→−24

[[]] = lim
→−24

(−3) = −3.

(b) (i) [[]] = − 1 for − 1 ≤   , so lim
→−

[[]] = lim
→−

(− 1) = − 1.

(ii) [[]] =  for  ≤   + 1, so lim
→+

[[]] = lim
→+

 = .

(c) lim
→

[[]] exists ⇔  is not an integer.

54. (a) See the graph of  = cos.

Since−1 ≤ cos  0 on [−−2), we have  = () = [[cos]] = −1

on [−−2).
Since 0 ≤ cos  1 on [−2 0) ∪ (0 2], we have () = 0

on [−2 0) ∪ (0 2].

Since −1 ≤ cos  0 on (2 ], we have () = −1 on (2 ].

Note that (0) = 1.
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57. If f(x) = JxK + J−xK, show that lim
x→2

f(x) exists but is not equal to f(2).

Solution:
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(b) (i) [[]] = − 1 for − 1 ≤   , so lim
→−

[[]] = lim
→−

(− 1) = − 1.

(ii) [[]] =  for  ≤   + 1, so lim
→+

[[]] = lim
→+

 = .

(c) lim
→

[[]] exists ⇔  is not an integer.

56. (a) See the graph of  = cos.

Since−1 ≤ cos  0 on [−−2), we have  = () = [[cos]] = −1
on [−−2).
Since 0 ≤ cos  1 on [−2 0) ∪ (0 2], we have () = 0

on [−2 0) ∪ (0 2].
Since −1 ≤ cos  0 on (2 ], we have () = −1 on (2 ].

Note that (0) = 1.

(b) (i) lim
→0−

() = 0 and lim
→0+

() = 0, so lim
→0

() = 0.

(ii) As → (2)−, ()→ 0, so lim
→(2)−

() = 0.

(iii) As → (2)+, ()→−1, so lim
→(2)+

() = −1.

(iv) Since the answers in parts (ii) and (iii) are not equal, lim
→2

() does not exist.

(c) lim
→

() exists for all  in the open interval (− ) except  = −2 and  = 2.

57. The graph of () = [[]] + [[−]] is the same as the graph of () = −1 with holes at each integer, since () = 0 for any

integer . Thus, lim
→2−

() = −1 and lim
→2+

 () = −1, so lim
→2

() = −1. However,

(2) = [[2]] + [[−2]] = 2 + (−2) = 0, so lim
→2

() 6= (2).

58. lim
→−


0


1− 2

2


= 0

√
1− 1 = 0. As the velocity approaches the speed of light, the length approaches 0.

A lefthand limit is necessary since  is not defined for   .

59. Since () is a polynomial, () = 0 + 1+ 2
2 + · · ·+ 

. Thus, by the Limit Laws,

lim
→

() = lim
→


0 + 1+ 2

2 + · · ·+ 


= 0 + 1 lim

→
+ 2 lim

→
2 + · · ·+  lim

→


= 0 + 1+ 2
2 + · · ·+ 

 = ()

Thus, for any polynomial , lim
→

() = ().

60. Let () = ()

()
where () and () are any polynomials, and suppose that () 6= 0. Then

lim
→

() = lim
→

()

()
=
lim
→

()

lim
→

 ()
[Limit Law 5] =

()

()
[Exercise 59] = ().
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