Section 2.3 Calculating Limits Using the Limit Laws

2. The graphs of f and g are given. Use them to evaluate each limit, if it exists. If the limit does not exist, explain why.

(a) $\lim_{x \to 2} [f(x) + g(x)]$ (b) $\lim_{x \to 0} [f(x) - g(x)]$ (c) $\lim_{x \to -1} [f(x)g(x)]$ (d) $\lim_{x \to 3} \frac{f(x)}{g(x)}$ (e) $\lim_{x \to 2} [x^2 f(x)]$ (f) $f(-1) + \lim_{x \to -1} g(x)$

Solution:

(a) $\lim_{x \to 2} [f(x) + g(x)] = \lim_{x \to 2} f(x) + \lim_{x \to 2} g(x)$ [Limit Law 1] = -1 + 2= 1

(b) $\lim_{x \to 0} f(x)$ exists, but $\lim_{x \to 0} g(x)$ does not exist, so we cannot apply Limit Law 2 to $\lim_{x \to 0} [f(x) - g(x)]$.

The limit does not exist.

(c)
$$\lim_{x \to -1} [f(x) g(x)] = \lim_{x \to -1} f(x) \cdot \lim_{x \to -1} g(x) \quad \text{[Limit Law 4]}$$
$$= 1 \cdot 2$$
$$= 2$$

(d) $\lim_{x\to 3} f(x) = 1$, but $\lim_{x\to 3} g(x) = 0$, so we cannot apply Limit Law 5 to $\lim_{x\to 3} \frac{f(x)}{g(x)}$. The limit does not exist.

Note:
$$\lim_{x \to 3^-} \frac{f(x)}{g(x)} = \infty \text{ since } g(x) \to 0^+ \text{ as } x \to 3^- \text{ and } \lim_{x \to 3^+} \frac{f(x)}{g(x)} = -\infty \text{ since } g(x) \to 0^- \text{ as } x \to 3^+.$$

Therefore, the limit does not exist, even as an infinite limit.

(e)
$$\lim_{x \to 2} \left[x^2 f(x) \right] = \lim_{x \to 2} x^2 \cdot \lim_{x \to 2} f(x) \quad [\text{Limit Law 4}] \qquad (f) \ f(-1) + \lim_{x \to -1} g(x) \text{ is undefined since } f(-1) \text{ is}$$
$$= 2^2 \cdot (-1) \qquad \text{not defined.}$$
$$= -4$$

34. Evaluate the limit, if it exists. $\lim_{h \to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}$

<u>Solution:</u>

$$\lim_{h \to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h} = \lim_{h \to 0} \frac{\frac{x^2 - (x+h)^2}{(x+h)^2 x^2}}{h} = \lim_{h \to 0} \frac{x^2 - (x^2 + 2xh + h^2)}{h x^2 (x+h)^2} = \lim_{h \to 0} \frac{-h(2x+h)}{h x^2 (x+h)^2}$$
$$= \lim_{h \to 0} \frac{-(2x+h)}{x^2 (x+h)^2} = \frac{-2x}{x^2 \cdot x^2} = -\frac{2}{x^3}$$

42. Prove that $\lim_{x \to 0^+} \sqrt{x} e^{\sin(\pi/x)} = 0.$

Solution:

$$\begin{split} -1 &\leq \sin(\pi/x) \leq 1 \quad \Rightarrow \quad e^{-1} \leq e^{\sin(\pi/x)} \leq e^1 \quad \Rightarrow \quad \sqrt{x}/e \leq \sqrt{x} \, e^{\sin(\pi/x)} \leq \sqrt{x} \, e. \text{ Since } \lim_{x \to 0^+} \left(\sqrt{x}/e \right) = 0 \text{ and } \lim_{x \to 0^+} \left(\sqrt{x} \, e^{\sin(\pi/x)} \right) = 0 \text{ by the Squeeze Theorem.} \end{split}$$

$$g(x) = \begin{cases} x & \text{if } x < 1\\ 3 & \text{if } x = 1\\ 2 - x^2 & \text{if } 1 < x \le 2\\ x - 3 & \text{if } x > 2 \end{cases}$$

(a) Evaluate each of the following, if it exists. (i) $\lim_{x \to 1^-} g(x)$ (ii) $\lim_{x \to 1} g(x)$ (iii) g(1) (iv) $\lim_{x \to 2^-} g(x)$ (v) $\lim_{x \to 2^+} g(x)$ (vi) $\lim_{x \to 2} g(x)$

(b) Sketch the graph of g.

Solution:

- (a) (i) $\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} x = 1$
 - (ii) $\lim_{x \to 1^+} g(x) = \lim_{x \to 1^+} (2 x^2) = 2 1^2 = 1$. Since $\lim_{x \to 1^-} g(x) = 1$ and $\lim_{x \to 1^+} g(x) = 1$, we have $\lim_{x \to 1} g(x) = 1$.

Note that the fact g(1) = 3 does not affect the value of the limit.

- (iii) When x = 1, g(x) = 3, so g(1) = 3.
- (iv) $\lim_{x \to 2^{-}} g(x) = \lim_{x \to 2^{-}} (2 x^2) = 2 2^2 = 2 4 = -2$
- (v) $\lim_{x \to 2^+} g(x) = \lim_{x \to 2^+} (x 3) = 2 3 = -1$
- (vi) $\lim_{x \to 2} g(x)$ does not exist since $\lim_{x \to 2^-} g(x) \neq \lim_{x \to 2^+} g(x)$.

$$g(x) = \begin{cases} x & \text{if } x < 1 \\ 3 & \text{if } x = 1 \\ 2 - x^2 & \text{if } 1 < x \le 2 \\ x - 3 & \text{if } x > 2 \end{cases}$$

57. If $f(x) = \llbracket x \rrbracket + \llbracket -x \rrbracket$, show that $\lim_{x \to 2} f(x)$ exists but is not equal to f(2).

Solution:

The graph of $f(x) = [\![x]\!] + [\![-x]\!]$ is the same as the graph of g(x) = -1 with holes at each integer, since f(a) = 0 for any integer a. Thus, $\lim_{x \to 2^-} f(x) = -1$ and $\lim_{x \to 2^+} f(x) = -1$, so $\lim_{x \to 2} f(x) = -1$. However, $f(2) = [\![2]\!] + [\![-2]\!] = 2 + (-2) = 0$, so $\lim_{x \to 2^-} f(x) \neq f(2)$.