
Section 14.7 Maximum and Minimum Values

20. Find the local maximum and minimum values and saddle point(s) of the function. You are encouraged to use a

calculator or computer to graph the function with a domain and viewpoint that reveals all the important aspects

of the function.

f(x, y) = (x2 + y2)e−x

Solution:

SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 1431

19. ( ) =  cos  ⇒  =  cos ,  = − sin .
Now  = 0 implies cos  = 0 or  = 

2 +  for  an integer.

But sin


2
+ 

 6= 0, so there are no critical points.

20. ( ) = (2 + 2)− ⇒  = (
2 + 2)(−−) + −(2) = (2− 2 − 2)−,  = 2

−,

 = (2− 2 − 2)(−−) + −(2− 2) = (2 + 2 − 4+ 2)−,  = −2−,  = 2
−. Then  = 0

implies  = 0 and substituting into  = 0 gives (2− 2)− = 0 ⇒
(2− ) = 0 ⇒  = 0 or  = 2, so the critical points are (0 0) and

(2 0). (0 0) = (2)(2)− (0)2 = 4  0 and (0 0) = 2  0, so

(0 0) = 0 is a local minimum.

(2 0) = (−2−2)(2−2)− (0)2 = −4−4  0 so (2 0) is a saddle

point.

21. ( ) = 2 − 2 cos ⇒  = 2 sin,  = 2 − 2 cos,
 = 2 cos,  = 2 sin,  = 2. Then  = 0 implies  = 0 or

sin = 0 ⇒  = 0, , or 2 for −1 ≤  ≤ 7. Substituting  = 0 into
 = 0 gives cos = 0 ⇒  = 

2
or 3

2
, substituting  = 0 or  = 2

into  = 0 gives  = 1, and substituting  =  into  = 0 gives  = −1.

Thus the critical points are (0 1),


2
 0

, (−1),  3

2
 0

, and (2 1).




2
 0

= 


3
2
 0

= −4  0 so



2
 0

and


3
2
 0

are saddle points. (0 1) = (−1) = (2 1) = 4  0 and

(0 1) = (−1) = (2 1) = 2  0, so (0 1) = (−1) = (2 1) = −1 are local minimums.

22. ( ) = sin sin  ⇒  = cos sin ,  = sin cos ,  = − sin sin ,  = cos cos ,
 = − sin sin . Here we have −     and −    , so  = 0 implies cos = 0 or sin  = 0. If cos = 0

then  = −
2 or


2 , and if sin  = 0 then  = 0. Substituting  = ±

2 into  = 0 gives cos  = 0 ⇒  = −
2 or


2 , and

substituting  = 0 into  = 0 gives sin = 0 ⇒  = 0. Thus the critical points are
−

2 ±
2


,


2 ±

2


, and (0 0).

(0 0) = −1  0 so (0 0) is a saddle point.


−

2
±

2


= 



2
±

2


= 1  0 and


−

2
−

2


= 



2
 
2


= −1  0 while


−

2 

2


= 



2 −

2


= 1  0, so 

−
2 −

2


= 



2 


2


= 1

are local maximums and 
−

2
 
2


= 



2
−

2


= 1 are local minimums.
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21. Find the local maximum and minimum values and saddle point(s) of the function. If you have three-dimensional

graphing software, graph the function with a domain and viewpoint that reveal all the important aspects of the

function.

f(x, y) = y2 − 2y cosx, −1 ≤ x ≤ 7

Solution:

SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 463

(1 1) = (−1−1) = (−2−1)(−2−1)− (0)2 = 4−2  0 and

(1 1) = (−1−1) = −2−1  0, so (1 1) = (−1−1) = −1

are local maxima.

(1−1) = (−1 1) = (2−1)(2−1)− (0)2 = 4−2  0 and

(1−1) = (−1 1) = 2−1  0, so (1−1) = (−1 1) = −−1

are local minima.

17. ( ) =  + − ⇒  =  − − ,  =  − − ,  = 2−,

 = 1− (−−) + −(1)


= 1 + ( − 1)− ,  = 2− . Then  = 0 implies (1− −) = 0 ⇒

 = 0 or − = 1 ⇒  = 0 or  = 0. If  = 0 then  = 0 for any -value, so all points of the form (0 0) are

critical points. If  = 0, then  = − 0 = 0 for any -value, so all points of the form (0 0) are critical points. We have

(0 0) = (0)(2
0)− (0)2 = 0 and (0 0) = (2

0)(0)− (0)2 = 0, so the Second Derivatives Test gives no information.

Notice that if we let  = , then ( ) = () = + − ⇒
0() = 1− −. Now 0() = 0 only for  = 0, and 0()  0 for   0,

0()  0 for   0. Thus (0) = 1 is a local and absolute minimum, so

( ) =  + − ≥ 1 for all ( ) with equality if and only if  = 0

or  = 0. Hence all points on the - and -axes are local (and absolute)

minima, where ( ) = 1.

18. ( ) = (2 + 2)− ⇒  = (2 + 2)(−−) + −(2) = (2− 2 − 2)−,  = 2−,

 = (2− 2 − 2)(−−) + −(2− 2) = (2 + 2 − 4+ 2)−,  = −2−,  = 2−. Then  = 0

implies  = 0 and substituting into  = 0 gives (2− 2)− = 0 ⇒
(2− ) = 0 ⇒  = 0 or  = 2, so the critical points are (0 0) and

(2 0). (0 0) = (2)(2)− (0)2 = 4  0 and (0 0) = 2  0, so

(0 0) = 0 is a local minimum.

(2 0) = (−2−2)(2−2)− (0)2 = −4−4  0 so (2 0) is a saddle

point.

19. ( ) = 2 − 2 cos ⇒  = 2 sin,  = 2 − 2 cos,

 = 2 cos,  = 2 sin,  = 2. Then  = 0 implies  = 0 or

sin = 0 ⇒  = 0, , or 2 for −1 ≤  ≤ 7. Substituting  = 0 into

 = 0 gives cos = 0 ⇒  = 
2
or 3

2
, substituting  = 0 or  = 2

into  = 0 gives  = 1, and substituting  =  into  = 0 gives  = −1.

Thus the critical points are (0 1),


2
 0

, (−1),


3
2
 0

, and (2 1).
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


2
 0


= 


3
2
 0


= −4  0 so


2
 0

and


3
2
 0

are saddle points. (0 1) = (−1) = (2 1) = 4  0 and

(0 1) = (−1) = (2 1) = 2  0, so (0 1) = (−1) = (2 1) = −1 are local minima.

20. ( ) = sin sin  ⇒  = cos sin ,  = sin cos ,  = − sin sin ,  = cos cos ,

 = − sin sin . Here we have −     and −    , so  = 0 implies cos = 0 or sin  = 0. If cos = 0

then  = −
2
or 

2
, and if sin  = 0 then  = 0. Substituting  = ±

2
into  = 0 gives cos  = 0 ⇒  = −

2
or 

2
, and

substituting  = 0 into  = 0 gives sin = 0 ⇒  = 0. Thus the critical points are
−

2
±

2


,


2
±

2


, and (0 0).

(0 0) = −1  0 so (0 0) is a saddle point.


−

2
±

2


= 



2
±

2


= 1  0 and


−

2
−

2


= 



2
 

2


= −1  0 while


−

2
 

2


= 



2
−

2


= 1  0, so 

−
2
−

2


= 



2
 

2


= 1

are local maxima and 
−

2
 

2


= 



2
−

2


= 1 are local minima.

21. ( ) = 2 + 42 − 4 + 2 ⇒  = 2− 4,  = 8 − 4,  = 2,  = −4,  = 8. Then  = 0

and  = 0 each implies  = 1
2
, so all points of the form


0

1
2
0


are critical points and for each of these we have



0

1
2
0


= (2)(8)− (−4)2 = 0. The Second Derivatives Test gives no information, but

( ) = 2 + 42 − 4 + 2 = (− 2)2 + 2 ≥ 2 with equality if and only if  = 1
2
. Thus 


0

1
2
0


= 2 are all local

(and absolute) minima.

22. ( ) = 2−
2−2 ⇒

 = 2−
2−2(−2) + 2−

2−2 = 2(1− 2)−
2−2 ,

 = 2−
2−2(−2) + 2−

2−2 = 2(1− 22)−
2−2 ,

 = 2(24 − 52 + 1)−
2−2 ,

 = 2(1− 2)(1− 22)−
2−2 ,  = 22(22 − 3)−

2−2 .

 = 0 implies  = 0,  = 0, or  = ±1. If  = 0 then  = 0 for any -value, so all points of the form (0 ) are critical

points. If  = 0 then  = 0 ⇒ 2−
2

= 0 ⇒  = 0, so (0 0) (already included above) is a critical point. If  = ±1

then (1− 22)−1−2 = 0 ⇒  = ± 1√
2
, so


±1 1√

2


and


±1− 1√

2


are critical points. Now



±1 1√

2


= 8−3  0, 


±1 1√

2


= −2

√
2 −32  0 and


±1− 1√

2


= 8−3  0,




±1− 1√

2


= 2

√
2 −32  0, so 


±1 1√

2


= 1√

2
−32 are local maximum points while



±1− 1√

2


= − 1√

2
−32 are local minimum points. At all critical points (0 ) we have(0 ) = 0, so the Second

Derivatives Test gives no information. However, if   0 then 2−
2−2 ≥ 0 with equality only when  = 0, so we have

local minimum values (0 ) = 0,   0. Similarly, if   0 then 2−
2−2 ≤ 0 with equality when  = 0 so

(0 ) = 0,   0 are local maximum values, and (0 0) is a saddle point.
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39. Find the absolute maximum and minimum values of f on the set D.

f(x, y) = 2x3 + y4, D = {(x, y)|x2 + y2 ≤ 1}

Solution:

SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 1439

 = 3 where (2 3) = 7 and a minimum value at  = 1 where (2 1) = −1. Along 3:  = 3, so
( 3) = 2 − 2+ 7 = (− 1)2 + 6, 0 ≤  ≤ 2, which has a maximum value both at  = 0 and  = 2 where
(0 3) = (2 3) = 7 and a minimum value at  = 1, where (1 3) = 6. Along 4:  = 0, so

(0 ) = 22 − 4 + 1 = 2( − 1)2 − 1, 0 ≤  ≤ 3, which has a
maximum value at  = 3 where (0 3) = 7 and a minimum value at  = 1

where (0 1) = −1. Thus the absolute maximum is attained at both (0 3)
and (2 3), where (0 3) = (2 3) = 7, and the absolute minimum is

(1 1) = −2.

38. ( ) = 2 ⇒  = 2 and  = 2, and since  = 0 ⇔
 = 0, there are no critical points in the interior of. Along 1:  = 0 and

( 0) = 0. Along 2:  = 0 and (0 ) = 0. Along 3:  =
√
3− 2,

so let () = 


√
3− 2


= 3− 3 for 0 ≤  ≤ √3. Then

0() = 3− 32 = 0 ⇔  = 1. The maximum value is 

1
√
2

= 2

and the minimum occurs both at  = 0 and  =
√
3 where 


0
√
3

= 

√
3 0

= 0. Thus the absolute maximum of  on

 is 

1
√
2

= 2, and the absolute minimum is 0 which occurs at all points along 1 and 2.

39. ( ) = 23 + 4 ⇒ ( ) = 6
2 and ( ) = 43. And so  = 0 and  = 0 only occur when  =  = 0.

Hence, the only critical point inside the disk is at  =  = 0 where (0 0) = 0. Now on the circle 2 + 2 = 1, 2 = 1− 2

so let () = ( ) = 23 + (1− 2)2 = 4 + 23 − 22 + 1, −1 ≤  ≤ 1. Then 0() = 43 + 62 − 4 = 0 ⇒

 = 0, −2, or 1
2 . (0±1) =  (0) = 1, 


1
2 ±

√
3
2


= 


1
2


= 13

16 , and (−2−3) is not in. Checking the endpoints, we

get (−1 0) = (−1) = −2 and (1 0) = (1) = 2. Thus the absolute maximum and minimum of  on are (1 0) = 2

and (−1 0) = −2.

Another method: On the boundary 2 + 2 = 1 we can write  = cos ,  = sin , so (cos  sin ) = 2 cos3  + sin4 ,

0 ≤  ≤ 2.

40. ( ) = 3 − 3− 3 + 12 ⇒ ( ) = 3
2 − 3 and ( ) = −32 + 12 and the critical points are (1 2),

(1−2), (−1 2), and (−1−2). But only (1 2) and (−1 2) are in and (1 2) = 14, (−1 2) = 18. Along 1:  = −2

and (−2 ) = −2− 3 + 12, −2 ≤  ≤ 3, which has a maximum at  = 2 where (−2 2) = 14 and a minimum at

 = −2 where (−2−2) = −18. Along 2:  = 2 and (2 ) = 2− 3 + 12, 2 ≤  ≤ 3, which has a maximum at

 = 2 where (2 2) = 18 and a minimum at  = 3 where (2 3) = 11. Along 3:  = 3 and ( 3) = 3 − 3+ 9,
−2 ≤  ≤ 2, which has a maximum at  = −1 and  = 2 where (−1 3) =  (2 3) = 11 and a minimum at  = 1
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55. A cardboard box without a lid is to have a volume of 32,000 cm3. Find the dimensions that minimize the amount

of cardboard used.

Solution:

SECTION 14.7 MAXIMUM AND MINIMUM VALUES ¤ 475

 = 0 implies  =
32− 2

2
and substituting into  = 0 gives 32(42)− (32− 2)(42)− (32− 2)2 = 0 or

34 + 642 − (32)2 = 0. Thus 2 = 64
6
or  = 8√

6
,  =

643

16
√

6
= 8√

6
and  = 8√

6
. Thus the box is a cube with edge

length 8√
6
cm.

51. Let the dimensions be , , and ; then 4 + 4 + 4 =  and the volume is

 =  = 


1
4
− − 


= 1

4
− 2− 2,   0,   0. Then  = 1

4
 − 2− 2 and  = 1

4
− 2 − 2,

so  = 0 =  when 2+  = 1
4
 and + 2 = 1

4
. Solving, we get  = 1

12
,  = 1

12
 and  = 1

4
− −  = 1

12
. From

the geometrical nature of the problem, this critical point must give an absolute maximum. Thus the box is a cube with edge

length 1
12
.

52. The cost equals 5 + 2( + ) and  =  , so ( ) = 5 + 2 ( + )() = 5 + 2 (−1 + −1). Then

 = 5 − 2 −2,  = 5− 2 −2,  = 0 implies  = 2(52),  = 0 implies  = 3


2
5
 = . Thus the

dimensions of the aquarium which minimize the cost are  =  = 3


2
5
 units,  =  13


5
2

23
.

53. Let the dimensions be ,  and , then minimize  + 2( + ) if  = 32,000 cm3. Then

( ) =  + [64,000(+ )] =  + 64,000(−1 + −1),  =  − 64,000−2,  = − 64,000−2.

And  = 0 implies  = 64,0002; substituting into  = 0 implies 3 = 64,000 or  = 40 and then  = 40. Now

( ) = [(2)(64,000)]2−3−3 − 1  0 for (40 40) and (40 40)  0 so this is indeed a minimum. Thus the

dimensions of the box are  =  = 40 cm,  = 20 cm.

54. Let  be the length of the north and south walls,  the length of the east and west walls, and  the height of the building. The

heat loss is given by  = 10(2) + 8(2) + 1() + 5() = 6 + 16 + 20 The volume is 4000 m3, so

 = 4000, and we substitute  = 4000


to obtain the heat loss function ( ) = 6 + 80,000+ 64,000.

(a) Since  = 4000


≥ 4,  ≤ 1000 ⇒  ≤ 1000. Also  ≥ 30 and

 ≥ 30, so the domain of  is = {( ) |  ≥ 30 30 ≤  ≤ 1000}.

(b) ( ) = 6 + 80,000−1 + 64,000−1 ⇒
 = 6 − 80,000−2,  = 6− 64,000−2.

 = 0 implies 62 = 80,000 ⇒  =
80,000
62

and substituting into

 = 0 gives 6 = 64,000


62

80,000

2

⇒ 3 =
80,0002

6 · 64,000
=

50,000
3

, so

 = 3


50,000

3
= 10 3


50

3
⇒  =

80
3
√

60
, and the only critical point of  is


10 3


50

3


80
3
√

60


≈ (2554 2043)

which is not in. Next we check the boundary of.
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61. Method of Least Squares Suppose that a scientist has reason to believe that two quantities x and y are related

linearly, that is, y = mx+b, at least approximately, for some values ofm and b. The scientist performs an experiment

and collects data in the form of points (x1, y1), (x2, y2), · · · , (xn, yn), and then plots these points. The points don’t

lie exactly on a straight line, so the scientist wants to find constants m and b so that the line y = mx+ b ”fits” the

points as well as possible (see the figure).

1018	 CHAPTER 14    Partial Derivatives

	42.	 �If a function of one variable is continuous on an interval and 
has only one critical number, then a local maximum has to 
be an absolute maximum. But this is not true for functions 
of two variables. Show that the function

f sx, yd − 3xe y 2 x 3 2 e 3y

has exactly one critical point and that f  has a local maxi
mum there that is not an absolute maximum. Produce a 
graph with a carefully chosen domain and viewpoint to see 
how this is possible.

	43.	 �Find the shortest distance from the point s2, 0, 23d to the 
plane x 1 y 1 z − 1.

	44.	 �Find the point on the plane x 2 2y 1 3z − 6 that is closest 
to the point s0, 1, 1d.

	45.	 �Find the points on the cone z 2 − x 2 1 y 2 that are closest to 
the point s4, 2, 0d.

	46.	 �Find the points on the surface y 2 − 9 1 xz that are closest 
to the origin.

	47.	 �Find three positive numbers whose sum is 100 and whose  
product is a maximum.

	48.	 �Find three positive numbers whose sum is 12 and the sum 
of whose squares is as small as possible.

	49.	 �Find the maximum volume of a rectangular box that is 
inscribed in a sphere of radius r.

	50.	 �Find the dimensions of the box with volume 1000 cm3 that 
has minimal surface area.

	51.	 �Find the volume of the largest rectangular box in the first 
octant with three faces in the coordinate planes and one  
vertex in the plane x 1 2y 1 3z − 6.

	52.	 �Find the dimensions of the rectangular box with largest  
volume if the total surface area is given as 64 cm2.

	53.	 �Find the dimensions of a rectangular box of maximum  
volume such that the sum of the lengths of its 12 edges  
is a constant c.

	54.	 �The base of an aquarium with given volume V is made of 
slate and the sides are made of glass. If slate costs five times 
as much (per unit area) as glass, find the dimensions of the 
aquarium that minimize the cost of the materials.

	55.	 �A cardboard box without a lid is to have a volume of 
32,000 cm3. Find the dimensions that minimize the amount  
of cardboard used.

	56.	 �A rectangular building is being designed to minimize  
heat loss. The east and west walls lose heat at a rate of 
10 unitsym2 per day, the north and south walls at a rate of 
8 unitsym2 per day, the floor at a rate of 1 unitym2 per day, 
and the roof at a rate of 5 unitsym2 per day. Each wall must 
be at least 30 m long, the height must be at least 4 m, and 
the volume must be exactly 4000 m3.

	 (a)	� Find and sketch the domain of the heat loss as a 
function of the lengths of the sides.

; 	 (b)	� Find the dimensions that minimize heat loss. (Check 
both the critical points and the points on the boundary of 
the domain.)

	 (c)	� Could you design a building with even less heat loss if 
the restrictions on the lengths of the walls were removed?

	57.	 �If the length of the diagonal of a rectangular box must be L, 
what is the largest possible volume?

	58.	 �A model for the yield Y of an agricultural crop as a function 
of the nitrogen level N and phosphorus level P in the soil 
(measured in appropriate units) is

YsN, Pd − kNPe2N2P

where k is a positive constant. What levels of nitrogen and 
phosphorus result in the best yield?

	59.	 �The Shannon index (sometimes called the Shannon-Wiener 
index or Shannon-Weaver index) is a measure of diversity in 
an ecosystem. For the case of three species, it is defined as

H − 2p1 ln p1 2 p2 ln p2 2 p3 ln p3

where pi is the proportion of species i in the ecosystem.
	 (a)	� Express H as a function of two variables using the fact 

that p1 1 p2 1 p3 − 1.
	 (b)	 What is the domain of H ?
	 (c)	� Find the maximum value of H. For what values of  

p1, p2, p3 does it occur?

	60.	 �Three alleles (alternative versions of a gene) A, B, and O  
determine the four blood types A (AA or AO), B (BB or 
BO), O (OO), and AB. The Hardy-Weinberg Law states that 
the proportion of individuals in a population who carry two 
different alleles is

P − 2pq 1 2pr 1 2rq

where p, q, and r are the proportions of A, B, and O in the  
population. Use the fact that p 1 q 1 r − 1 to show that P 
is at most 23.

	61.	 �Method of Least Squares  Suppose that a scientist has rea-
son to believe that two quantities x and y are related linearly, 
that is, y − mx 1 b, at least approximately, for some values 
of m and b. The scientist performs an experiment and col-
lects data in the form of points sx1, y1d, sx2, y2 d, . . . , sxn, yn d, 
and then plots these points. The points don’t lie exactly on a 
straight line, so the scientist wants to find constants m and b 
so that the line y − mx 1 b “fits” the points as well as pos-
sible (see the figure).

(⁄, ›)

(xi, yi)

mxi+b

di

y

x0
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Let di = yi − (mxi + b) be the vertical deviation of the point (xi, yi) from the line. The method of least squares

determines m and b so as to minimize
∑n

i=1 d
2
i , the sum of the squares of these deviations. Show that, according to

this method, the line of best fit is obtained when

m

n∑
i=1

xi + bn =

n∑
i=1

yi and m

n∑
i=1

x2
i + b

n∑
i=1

xi =

n∑
i=1

xiyi

2



Thus the line is found by solving these two equations in the two unknowns m and b. (See Section 1.2 for a further

discussion and applications of the method of least squares.) Solution:

1446 ¤ CHAPTER 14 PARTIAL DERIVATIVES

 = 1− 2, and substituting into the second equation we have 2− 4(1− 2)− 2 = 0 ⇒  = 1
3 . Then we have one

critical point,

1
3
 1
3


, where 


1
3
 1
3


= 2

3
. Next we find the maximum values of  on the boundary of which consists of

three line segments. For the segment given by  = 0, 0 ≤  ≤ 1,  ( ) =  ( 0) = 2 − 22, 0 ≤  ≤ 1. This represents

a parabola with maximum value 

1
2  0

= 1

2 . On the segment  = 0, 0 ≤  ≤ 1 we have  (0 ) = 2 − 22, 0 ≤  ≤ 1.

This represents a parabola with maximum value 

0 1

2


= 1

2
. Finally, on the segment  +  = 1, 0 ≤  ≤ 1,

 ( ) =  ( 1− ) = 2 − 22, 0 ≤  ≤ 1 which has a maximum value of  12  12 = 1
2 . Comparing these values with

the value of  at the critical point, we see that the absolute maximum value of  ( ) on is 2
3 .

61. Note that here the variables are and , and () =


=1

[ − ( + )]2. Then  =


=1

−2[ − ( + )] = 0

implies


=1


 −2 − 


= 0 or


=1

 = 


=1

2 + 


=1

 and  =


=1

−2[ − ( + )] = 0 implies


=1

 = 


=1

 +


=1

 = 




=1




+ . Thus, we have the two desired equations.

Now  =


=1

22 ,  =


=1

2 = 2 and  =


=1

2. And ( )  0 always and

() = 4




=1

2


− 4



=1



2
= 4







=1

2


−



=1



2
 0 always so the solutions of these two

equations do indeed minimize


=1

2 .

62. Any such plane must cut out a tetrahedron in the first octant. We need to minimize the volume of the tetrahedron that passes

through the point (1 2 3). Writing the equation of the plane as 

+




+




= 1, the volume of the tetrahedron is given by

 =


6
. But (1 2 3) must lie on the plane, so we need 1


+
2


+
3


= 1 () and thus can think of  as a function of  and .

Then  =


6


+ 






and  =



6


+ 






. Differentiating () with respect to  we get −−2 − 3−2 


= 0 ⇒




=
−2
32

, and differentiating () with respect to  gives −2−2 − 3−2 

= 0 ⇒ 


=
−22
32

. Then

 =


6


+ 

−2
32


= 0 ⇒  = 3, and  =



6


+ 

−22
32


= 0 ⇒  = 3

2. Thus, 3 =
3
2 or  = 2. Putting

these into () gives 3

= 1 or  = 3 and then  = 6,  = 9. Thus , the equation of the required plane is

3
+



6
+



9
= 1

or 6+ 3 + 2 = 18.
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