
Section 12.6 Cylinders and Quadric Surfaces

26. Match the equation with its graph (labeled I–VIII). Give reasons for your choice. −x2 + y2 − z2 = 1

30. Match the equation with its graph (labeled I–VIII). Give reasons for your choice. y = x2 − z2
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23–30  Match the equation with its graph (labeled I–VIII). Give  
reasons for your choice.

	23.	 x 2 1 4y 2 1 9z2 − 1	 24.	 9x 2 1 4y 2 1 z2 − 1

	25.	 x 2 2 y 2 1 z2 − 1	 26.	 2x 2 1 y 2 2 z2 − 1

	27.	 y − 2x 2 1 z2	 28.	 y 2 − x 2 1 2z2

	29.	 x 2 1 2z2 − 1	 30.	 y − x 2 2 z2
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31–32  Sketch and identify a quadric surface that could have the 
traces shown.
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33–40  Reduce the equation to one of the standard forms, 
classify the surface, and sketch it.

	33.	 y 2 − x 2 1 1
9 z 2	 34.	 4x 2 2 y 1 2z 2 − 0

	35.	 x 2 1 2y 2 2z2 − 0	 36.	 y 2 − x 2 1 4z 2 1 4

	37.	 x 2 1 y 2 2 2x 2 6y 2 z 1 10 − 0

	38.	 x 2 2 y 2 2 z 2 2 4x 2 2z 1 3 − 0

	39.	 x 2 2 y 2 1 z 2 2 4x 2 2z − 0

	40.	 4x 2 1 y 2 1 z 2 2 24x 2 8y 1 4z 1 55 − 0

41–44  Graph the surface. Experiment with viewpoints and  
with domains for the variables until you get a good view of the 
surface.

	41.	 24x 2 2 y 2 1 z2 − 1	 42.	 x 2 2 y 2 2 z − 0

	43.	 24x 2 2 y 2 1 z2 − 0	 44.	 x 2 2 6x 1 4y 2 2 z − 0

	45.	 �Sketch the region bounded by the surfaces z − sx 2 1 y 2   
and x 2 1 y 2 − 1 for 1 < z < 2.

	46.	 �Sketch the region bounded by the paraboloids z − x 2 1 y 2  
and z − 2 2 x 2 2 y 2.

	47.	 �Find an equation for the surface obtained by rotating the 
curve y − sx  about the x-axis.

	48.	 �Find an equation for the surface obtained by rotating the 
line z − 2y about the z-axis.

	49.	 �Find an equation for the surface consisting of all points 
that are equidistant from the point s21, 0, 0d and the  
plane x − 1. Identify the surface.

	50.	 �Find an equation for the surface consisting of all points P 
for which the distance from P to the x-axis is twice the dis-
tance from P to the yz-plane. Identify the surface.

;
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Solution:

1252 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

25. 2 − 2 + 2 = 1 is the equation of a hyperboloid of one sheet, with  =  =  = 1. Since the coefficient of 2 is negative,

the axis of the hyperboloid is the ­axis. Hence, the correct graph is II.

26. −2 + 2 − 2 = 1 is the equation of a hyperboloid of two sheets, with  =  =  = 1. This surface does not intersect the

­plane at all, so the axis of the hyperboloid is the ­axis. Hence, the correct graph is III.

27. There are no real values of  and  that satisfy this equation,  = 22 + 2, for   0, so this surface does not extend to the

left of the ­plane. The surface intersects the plane  =   0 in an ellipse. Notice that  occurs to the first power whereas

 and  occur to the second power. So the surface is an elliptic paraboloid with axis the ­axis. Its graph is VI.

28. 2 = 2 + 22 is the equation of a cone with axis the ­axis. Its graph is I.

29. 2 + 22 = 1 is the equation of a cylinder because the variable  is missing from the equation. The intersection of the surface

and the ­plane is an ellipse. Its graph is VIII.

30.  = 2 − 2 is the equation of a hyperbolic paraboloid. The trace in the ­plane is the parabola  = 2. So the correct graph

is V.

31. Vertical traces parallel to the ­plane are circles centered at the origin whose radii increase as  decreases. (The trace in

 = 1 is just a single point and the graph suggests that traces in  =  are empty for   1.) The traces in vertical planes

parallel to the ­plane are parabolas opening to the left that shift to the left as || increases. One surface that fits this
description is a circular paraboloid, opening to the left, with vertex (0 1 0).

32. The vertical traces parallel to the ­plane are ellipses that are smallest in

the ­plane and increase in size as || increases. One surface that fits this
description is a hyperboloid of one sheet with axis the ­axis. The

horizontal traces in  =  (hyperbolas and intersecting lines) also fit this

surface, as shown in the figure.
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38. Reduce the equation to one of the standard forms, classify the surface, and sketch it. x2− y2− z2−4x−2z+3 = 0.

Solution:

294 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

33. 2 + 2 − 22 = 0 or 2 = 22 − 2 or  = 2 − 2

2

represents a hyperbolic paraboloid with center (0 0 0).

34. 2 = 2 + 42 + 4 or −2 + 2 − 42 = 4 or

−2

4
+

2

4
− 2 = 1 represents a hyperboloid of two

sheets with axis the -axis.

35. Completing squares in  and  gives
2 − 2+ 1


+

2 − 6 + 9

−  = 0 ⇔

(− 1)2 + ( − 3)2 −  = 0 or  = (− 1)2 + ( − 3)2, a circular

paraboloid opening upward with vertex (1 3 0) and axis the vertical line

 = 1,  = 3.

36. Completing squares in  and  gives

2 − 4+ 4

− 2 − 2 + 2 + 1


+ 3 = 0 + 4− 1 ⇔
(− 2)

2 − 2 − ( + 1)
2

= 0 or (− 2)
2

= 2 + ( + 1)
2, a circular

cone with vertex (2 0−1) and axis the horizontal line  = 0,  = −1.

37. Completing squares in  and  gives
2 − 4+ 4

− 2 +

2 − 2 + 1


= 0 + 4 + 1 ⇔

(− 2)
2 − 2 + ( − 1)

2
= 5 or

(− 2)2

5
− 2

5
+

( − 1)2

5
= 1, a

hyperboloid of one sheet with center (2 0 1) and axis the horizontal line

 = 2,  = 1.
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48. Find an equation for the surface obtained by rotating the line z = 2y about the z-axis.

Solution:

296 ¤ CHAPTER 12 VECTORS AND THE GEOMETRY OF SPACE

42. We plot the surface  = 2 − 6 + 42.

43. 44.

45. The curve  =
√
 is equivalent to  = 2,  ≥ 0. Rotating the curve about

the -axis creates a circular paraboloid with vertex at the origin, axis the

-axis, opening in the positive -direction. The trace in the -plane is

 = 2,  = 0, and the trace in the -plane is a parabola of the same

shape:  = 2,  = 0. An equation for the surface is  = 2 + 2.

46. Rotating the line  = 2 about the -axis creates a (right) circular cone with

vertex at the origin and axis the -axis. Traces in  =  ( 6= 0) are circles

with center (0 0 ) and radius  = 2 = 2, so an equation for the trace

is 2 + 2 = (2)
2,  = . Thus an equation for the surface is

2 + 2 = (2)
2 or 42 + 42 = 2.

47. Let  = (, , ) be an arbitrary point equidistant from (−1, 0, 0) and the plane  = 1. Then the distance from  to

(−1, 0, 0) is


( + 1)2 + 2 + 2 and the distance from  to the plane  = 1 is |− 1| 
√

12 = |− 1|

(by Equation 12.5.9). So |− 1| =


( + 1)2 + 2 + 2 ⇔ (− 1)2 = ( + 1)2 + 2 + 2 ⇔

2 − 2 + 1 = 2 + 2 + 1 + 2 + 2 ⇔ −4 = 2 + 2. Thus the collection of all such points  is a circular

paraboloid with vertex at the origin, axis the -axis, which opens in the negative -direction.
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50. Find an equation for the surface consisting of all points P for which the distance from P to the x-axis is twice the

distance from P to the yz-plane. Identify the surface.

Solution:
SECTION 12.6 CYLINDERS AND QUADRIC SURFACES ¤ 297

48. Let  = (  ) be an arbitrary point whose distance from the -axis is twice its distance from the -plane. The distance

from  to the -axis is


(− )2 + 2 + 2 =

2 + 2 and the distance from  to the -plane ( = 0) is || 1 = ||.

Thus

2 + 2 = 2 || ⇔ 2 + 2 = 42 ⇔ 2 = (222) + (222). So the surface is a right circular cone with

vertex the origin and axis the -axis.

49. (a) An equation for an ellipsoid centered at the origin with intercepts  = ±,  = ±, and  = ± is 
2

2
+

2

2
+

2

2
= 1.

Here the poles of the model intersect the -axis at  = ±6356523 and the equator intersects the - and -axes at

 = ±6378137,  = ±6378137, so an equation is

2

(6378137)2
+

2

(6378137)2
+

2

(6356523)2
= 1

(b) Traces in  =  are the circles
2

(6378137)2
+

2

(6378137)2
= 1 − 2

(6356523)2
⇔

2 + 2 = (6378137)2 −


6378137

6356523

2

2.

(c) To identify the traces in  =  we substitute  =  into the equation of the ellipsoid:

2

(6378137)2
+

()2

(6378137)2
+

2

(6356523)2
= 1

(1 +2)2

(6378137)2
+

2

(6356523)2
= 1

2

(6378137)2(1 +2)
+

2

(6356523)2
= 1

As expected, this is a family of ellipses.

50. If we position the hyperboloid on coordinate axes so that it is centered at the origin with axis the -axis then its equation is

given by
2

2
+

2

2
− 2

2
= 1. Horizontal traces in  =  are

2

2
+

2

2
= 1 +

2

2
, a family of ellipses, but we know that the

traces are circles so we must have  = . The trace in  = 0 is
2

2
+

2

2
= 1 ⇔ 2 + 2 = 2 and since the minimum

radius of 100 m occurs there, we must have  = 100. The base of the tower is the trace in  = −500 given by

2

2
+

2

2
= 1 +

(−500)2

2
but  = 100 so the trace is 2 + 2 = 1002 + 50,0002 1

2
. We know the base is a circle of

radius 140, so we must have 1002 + 50,0002 1

2
= 1402 ⇒ 2 =

50,0002

1402 − 1002
=

781,250
3

and an equation for the

tower is
2

1002
+

2

1002
− 2

(781,250)3
= 1 or

2

10,000
+

2

10,000
− 32

781,250
= 1, −500 ≤  ≤ 500.

51. If (  ) satisfies  = 2 − 2, then  = 2 − 2. 1:  = + ,  = + ,  = + 2(− ),

2:  = + ,  = − ,  = − 2( + ). Substitute the parametric equations of 1 into the equation of the hyperbolic

paraboloid in order to find the points of intersection:  = 2 − 2 ⇒
+ 2(− ) = (+ )2 − (+ )2 = 2 − 2 + 2(− ) ⇒  = 2 − 2. As this is true for all values of ,
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