Section 10.3 Polar Coordinates

10. Sketch the region in the plane consisting of points whose polar coordinates satisfy the given conditions.

$$3 < r < 5, \ 2\pi/3 \le \theta \le 4\pi/3$$

Solution:

 $3 < r < 5, \ 2\pi/3 \le \theta \le 4\pi/3$

18. Identify the curve by finding a Cartesian equation for the curve.

$$\theta = \pi/3$$

Solution:

 $\theta = \frac{\pi}{3} \Rightarrow \tan \theta = \tan \frac{\pi}{3} \Rightarrow \frac{y}{x} = \sqrt{3} \Leftrightarrow y = \sqrt{3}x$, a line through the origin.

25. Find a polar equation for the curve represented by the given Cartesian equation.

$$x^2 + y^2 = 4y$$

Solution:

 $x^2 + y^2 = 4y \Rightarrow r^2 = 4r\sin\theta \Rightarrow r^2 - 4r\sin\theta = 0 \Rightarrow r(r - 4\sin\theta) = 0 \Rightarrow r = 0 \text{ or } r = 4\sin\theta.$ r = 0 is included in $r = 4\sin\theta$ when $\theta = 0$, so the curve is represented by the single equation $r = 4\sin\theta.$

36. Sketch the curve with the given polar equation by first sketching the graph of r as a function of θ in Cartesian coordinates.

$$r = 1 + 2\cos\theta$$

Solution:

 $r = 1 + 2\cos\theta$

54. Sketch the curve $(x^2 + y^2)^3 = 4x^2y^2$.

Solution:

The equation is $(x^2 + y^2)^3 = 4x^2y^2$, but using polar coordinates we know that $x^2 + y^2 = r^2$ and $x = r \cos \theta$ and $y = r \sin \theta$. Substituting into the given equation: $r^6 = 4r^2 \cos^2 \theta r^2 \sin^2 \theta \implies r^2 = 4 \cos^2 \theta \sin^2 \theta \implies$ $r = \pm 2 \cos \theta \sin \theta = \pm \sin 2\theta$. $r = \pm \sin 2\theta$ is sketched at right.

58. Show that the curves $r = a \sin \theta$ and $r = a \cos \theta$ intersect at right angles.

Solution:

These curves are circles which intersect at the origin and at $\left(\frac{1}{\sqrt{2}}a, \frac{\pi}{4}\right)$. At the origin, the first circle has a horizontal tangent and the second a vertical one, so the tangents are perpendicular here. For the first circle $[r = a \sin \theta]$, $dy/d\theta = a \cos \theta \sin \theta + a \sin \theta \cos \theta = a \sin 2\theta = a$ at $\theta = \frac{\pi}{4}$ and $dx/d\theta = a \cos^2 \theta - a \sin^2 \theta = a \cos 2\theta = 0$ at $\theta = \frac{\pi}{4}$, so the tangent here is vertical. Similarly, for the second circle $[r = a \cos \theta]$, $dy/d\theta = a \cos 2\theta = 0$ and $dx/d\theta = -a \sin 2\theta = -a$ at $\theta = \frac{\pi}{4}$, so the tangent is horizontal, and again the tangents are perpendicular.