Section 9.5 Linear Equations

24. Solve the initial-value problem.

$$
\left(x^{2}+1\right) \frac{d y}{d x}+3 x(y-1)=0, \quad y(0)=2
$$

Solution:

$\left(x^{2}+1\right) \frac{d y}{d x}+3 x(y-1)=0 \quad \Rightarrow \quad\left(x^{2}+1\right) y^{\prime}+3 x y=3 x \quad \Rightarrow \quad y^{\prime}+\frac{3 x}{x^{2}+1} y=\frac{3 x}{x^{2}+1}$.
$I(x)=e^{\int 3 x /\left(x^{2}+1\right) d x}=e^{(3 / 2) \ln \left|x^{2}+1\right|}=\left(e^{\ln \left(x^{2}+1\right)}\right)^{3 / 2}=\left(x^{2}+1\right)^{3 / 2}$. Multiplying by $\left(x^{2}+1\right)^{3 / 2}$ gives
$\left(x^{2}+1\right)^{3 / 2} y^{\prime}+3 x\left(x^{2}+1\right)^{1 / 2} y=3 x\left(x^{2}+1\right)^{1 / 2} \Rightarrow\left[\left(x^{2}+1\right)^{3 / 2} y\right]^{\prime}=3 x\left(x^{2}+1\right)^{1 / 2} \Rightarrow$
$\left(x^{2}+1\right)^{3 / 2} y=\int 3 x\left(x^{2}+1\right)^{1 / 2} d x=\left(x^{2}+1\right)^{3 / 2}+C \Rightarrow y=1+C\left(x^{2}+1\right)^{-3 / 2}$. Since $y(0)=2$, we have $2=1+C(1) \quad \Rightarrow \quad C=1$ and hence, $y=1+\left(x^{2}+1\right)^{-3 / 2}$.
30. Solve the second-order equation $x y^{\prime \prime}+2 y^{\prime}=12 x^{2}$ by making the substitution $u=y^{\prime}$.

Solution:

$x y^{\prime \prime}+2 y^{\prime}=12 x^{2}$ and $u=y^{\prime} \quad \Rightarrow \quad x u^{\prime}+2 u=12 x^{2} \quad \Rightarrow \quad u^{\prime}+\frac{2}{x} u=12 x$.
$I(x)=e^{\int(2 / x) d x}=e^{2 \ln |x|}=\left(e^{\ln |x|}\right)^{2}=|x|^{2}=x^{2}$. Multiplying the last differential equation by x^{2} gives
$x^{2} u^{\prime}+2 x u=12 x^{3} \Rightarrow\left(x^{2} u\right)^{\prime}=12 x^{3} \Rightarrow x^{2} u=\int 12 x^{3} d x=3 x^{4}+C \quad \Rightarrow \quad u=3 x^{2}+C / x^{2} \Rightarrow$ $y^{\prime}=3 x^{2}+C / x^{2} \Rightarrow y=x^{3}-C / x+D$.
39. An object with mass m is dropped from rest and we assume that the air resistance is proportional to the speed of the object. If $s(t)$ is the distance dropped after t seconds, then the speed is $v=s^{\prime}(t)$ and the acceleration is $a=v^{\prime}(t)$. If g is the acceleration due to gravity, then the downward force on the object is $m g-c v$, where c is a positive constant, and Newton's Second Law gives

$$
m \frac{d v}{d t}=m g-c v
$$

(a) Solve this as a linear equation to show that

$$
v=\frac{m g}{c}\left(1-e^{-c t / m}\right)
$$

(b) What is the limiting velocity?
(c) Find the distance the object has fallen after t seconds.

Solution:

(a) $m \frac{d v}{d t}=m g-c v \Rightarrow \frac{d v}{d t}+\frac{c}{m} v=g$ and $I(t)=e^{\int(c / m) d t}=e^{(c / m) t}$, and multiplying the last differential equation by $I(t)$ gives $e^{(c / m) t} \frac{d v}{d t}+\frac{v c e^{(c / m) t}}{m}=g e^{(c / m) t} \Rightarrow\left[e^{(c / m) t} v\right]^{\prime}=g e^{(c / m) t}$. Hence, $v(t)=e^{-(c / m) t}\left[\int g e^{(c / m) t} d t+K\right]=m g / c+K e^{-(c / m) t}$. But the object is dropped from rest, so $v(0)=0$ and $K=-m g / c$. Thus, the velocity at time t is $v(t)=(m g / c)\left[1-e^{-(c / m) t}\right]$.
(b) $\lim _{t \rightarrow \infty} v(t)=m g / c$
(c) $s(t)=\int v(t) d t=(m g / c)\left[t+(m / c) e^{-(c / m) t}\right]+c_{1}$ where $c_{1}=s(0)-m^{2} g / c^{2}$.
$s(0)$ is the initial position, so $s(0)=0$ and $s(t)=(m g / c)\left[t+(m / c) e^{-(c / m) t}\right]-m^{2} g / c^{2}$.
41. (a) Show that the substitution $z=1 / P$ transforms the logistic differential equation $P^{\prime}=k P(1-P / M)$ into the linear differential equation

$$
z^{\prime}+k z=\frac{k}{M}
$$

(b) Solve the linear differential equation in part (a) and thus obtain an expression for $P(t)$. Compare with Equation 9.4.7.

Solution:

(a) $z=\frac{1}{P} \Rightarrow P=\frac{1}{z} \Rightarrow P^{\prime}=-\frac{z^{\prime}}{z^{2}}$. Substituting into $P^{\prime}=k P(1-P / M)$ gives us $-\frac{z^{\prime}}{z^{2}}=k \frac{1}{z}\left(1-\frac{1}{z M}\right) \Rightarrow$ $z^{\prime}=-k z\left(1-\frac{1}{z M}\right) \Rightarrow z^{\prime}=-k z+\frac{k}{M} \Rightarrow \quad z^{\prime}+k z=\frac{k}{M}$
(b) The integrating factor is $e^{\int k d t}=e^{k t}$. Multiplying (\star) by $e^{k t}$ gives $e^{k t} z^{\prime}+k e^{k t} z=\frac{k e^{k t}}{M} \quad \Rightarrow \quad\left(e^{k t} z\right)^{\prime}=\frac{k}{M} e^{k t} \Rightarrow$ $e^{k t} z=\int \frac{k}{M} e^{k t} d t \Rightarrow e^{k t} z=\frac{1}{M} e^{k t}+C \Rightarrow z=\frac{1}{M}+C e^{-k t}$. Since $P=\frac{1}{z}$, we have $P=\frac{1}{\frac{1}{M}+C e^{-k t}} \Rightarrow P=\frac{M}{1+M C e^{-k t}}$, which agrees with Equation 9.4.7, $P=\frac{M}{1+A e^{-k t}}$, when $M C=A$.

