
Section 9.4 Models for Population Growth

9. The population of the world was about 6.1 billion in 2000. Birth rates around that time ranged from 35 to 40

million per year and death rates ranged from 15 to 20 million per year. Let’s assume that the carrying capacity for

world population is 20 billion.

(a) Write the logistic differential equation for these data. (Because the initial population is small compared to the

carrying capacity, you can take k to be an estimate of the initial relative growth rate.)

(b) Use the logistic model to estimate the world population in the year 2010 and compare with the actual population

of 6.9 billion.

(c) Use the logistic model to predict the world population in the years 2100 and 2500.

Solution:

SECTION 9.4 MODELS FOR POPULATION GROWTH ¤ 831

7. Using Equation 7,  =
 − 0

0

=
10,000− 1000

1000
= 9, so  () =

10,000
1 + 9−

.  (1) = 2500 ⇒

2500 =
10,000

1 + 9−(1)
⇒ 1 + 9− = 4 ⇒ 9− = 3 ⇒ − = 1

3
⇒ − = ln 1

3
⇒  = ln 3. After

another three years,  = 4, and  (4) =
10,000

1 + 9−(ln 3)4
=

10,000

1 + 9 (ln 3)
−4

=
10,000

1 + 9(3)−4
=

10,000
1 + 1

9

=
10,000

10
9

= 9000.

8. (a) From the graph, we estimate the carrying capacity for the yeast

population to be 680.

(b) An estimate of the initial relative growth rate is
1

0




=

1

18
· 39− 18

2− 0
=

7

12
= 0583.

(c) An exponential model is  () = 18712. A logistic model is  () =
680

1 +−712
, where  = 680− 18

18
= 331

9
.

(d)
Time in
Hours

Observed
Values

Exponential
Model

Logistic
Model

0 18 18 18

2 39 58 55

4 80 186 149

6 171 596 322

8 336 1914 505

10 509 6147 614

12 597 19,739 658

14 640 63,389 673

16 664 203,558 678

18 672 653,679 679

The exponential model is a poor fit for anything beyond the

first two observed values. The logistic model varies more for

the middle values than it does for the values at either end, but

provides a good general fit, as shown in the figure.

(e)  (7) =
680

1 + 331
9
−7(712)

≈ 420 yeast cells

9. (a) We will assume that the difference in birth and death rates is 20 million/year. Let  = 0 correspond to the year 2000. Thus,

 ≈
1






=

1

61 billion


20 million

year


=

1

305
, and




= 


1− 




=

1

305



1− 

20


with  in billions.

(b)  =
 − 0

0

=
20− 61

61
=

139

61
≈ 22787.  () =



1 +−
=

20

1 + 139
61

−305
, so

 (10) =
20

1 + 139
61

−10305
≈ 624 billion, which underestimates the actual 2010 population of 69 billion.

(c) The years 2100 and 2500 correspond to  = 100 and  = 500, respectively.  (100) =
20

1 + 139
61

−100305
≈ 757 billion

and  (500) =
20

1 + 139
61

−500305
≈ 1387 billion.
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18. Doomsday Equation Let c be a positive number. A differential equation of the form

dy

dt
= ky1+c

where k is a positive constant, is called a doomsday equation because the exponent in the expression ky1+c is larger

than the exponent 1 for natural growth.

(a) Determine the solution that satisfies the initial condition y(0) = y0.

(b) Show that there is a finite time t = T (doomsday) such that limt→T− y(t) = ∞.

(c) An especially prolific breed of rabbits has the growth term ky1.01. If 2 such rabbits breed initially and the warren

has 16 rabbits after three months, then when is doomsday?

Solution:

834 ¤ CHAPTER 9 DIFFERENTIAL EQUATIONS

16. Following the hint, we choose  = 0 to correspond to 1960 and subtract

3500 from each of the population figures. We then use a calculator to

obtain the models and add 3500 to get the exponential function

() = 1809934(10445) + 3500 and the logistic function

() =
13489650

1 + 62784−00721
+ 3500.  is a reasonably accurate

accurate model, while  is not, since an exponential model would only be used for the first few data points.

17. (a)



=  − = 


 − 




. Let  =  − 


, so




=




and the differential equation becomes




= .

The solution is  = 0
 ⇒  − 


=

0 − 




 ⇒  () =




+

0 − 




.

(b) Since   0, there will be an exponential expansion ⇔ 0 − 


 0 ⇔   0.

(c) The population will be constant if 0 − 


= 0 ⇔  = 0. It will decline if 0 − 


 0 ⇔   0.

(d) 0 = 8,000,000,  = −  = 0016, = 210,000 ⇒   0 (= 128,000), so by part (c), the population was

declining.

18. (a)



= 1+ ⇒ −1−  =   ⇒ −

− =  + . Since (0) = 0, we have  =
−0

− . Thus,

−

− =  +
−0

− , or 
− = −0 − . So  =

1

−0 − 
=

0
1− 0

and () =
0

(1− 0)
1

.

(b) ()→∞ as 1− 0→ 0, that is, as → 1

0
. Define  =

1

0
. Then lim

→−
() =∞.

(c) According to the data given, we have  = 001, (0) = 2, and (3) = 16, where the time  is given in months. Thus,

0 = 2 and 16 = (3) =
0

(1− 0 · 3)1
. Since  =

1

0
, we will solve for 0. 16 =

2

(1− 30)
100

⇒

1− 30 =


1
8

001
= 8−001 ⇒ 0 = 1

3


1− 8−001


. Thus, doomsday occurs when

 =  =
1

0
=

3

1− 8−001
≈ 14577 months or 1215 years.

19. (a) The term −15 represents a harvesting of fish at a constant rate—in this case, 15 fishweek. This is the rate at which fish

are caught.

(b) (c) From the graph in part (b), it appears that  () = 250 and  () = 750

are the equilibrium solutions. We confirm this analytically by solving the

equation  = 0 as follows: 008 (1− 1000)− 15 = 0 ⇒

008 − 000008 2 − 15 = 0 ⇒
−000008( 2 − 1000 + 187,500) = 0 ⇒
( − 250)( − 750) = 0 ⇒  = 250 or 750.
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21. There is considerable evidence to support the theory that for some species there is a minimum population m such

that the species will become extinct if the size of the population falls below m. This condition can be incorporated

into the logistic equation by introducing the factor (1 − m/P ). Thus the modified logistic model is given by the

differential equation
dP

dt
= kP

(
1− P

M

)(
1− m

P

)
(a) Use the differential equation to show that any solution is increasing if m < P < M and decreasing if 0 < P < m.

(b) For the case where k = 0.08, M = 1000, and m = 200, draw a direction field and use it to sketch several

solution curves. Describe what happens to the population for various initial populations. What are the equilibrium

solutions?

(c) Solve the differential equation explicitly, either by using partial fractions or with a computer algebra system.

Use the initial population P0.

(d) Use the solution in part (c) to show that if P0 < m, then the species will become extinct. [Hint: Show that the

numerator in your expression for P (t) is 0 for some value of t.]

Solution:

836 ¤ CHAPTER 9 DIFFERENTIAL EQUATIONS

(c)



= 008 − 000008 2 − .




= 0 ⇔  =

−008±


(008)2 − 4(−000008)(−)
2(−000008)

, which has at least

one solution when the discriminant is nonnegative ⇒ 00064− 000032 ≥ 0 ⇔  ≤ 20. For 0 ≤  ≤ 20, there is

at least one value of  such that  = 0 and hence, at least one equilibrium solution. For   20,   0 and the

population always dies out.

(d) The weekly catch should be less than 20 fish per week.

21. (a)



= ( )


1− 




1− 




. If     , then  = (+)(+)(+) = + ⇒  is increasing.

If 0    , then  = (+)(+)(−) = − ⇒  is decreasing.

(b)  = 008, = 1000, and = 200 ⇒



= 008


1− 

1000


1− 200




For 0  0  200, the population dies out. For 0 = 200, the population

is steady. For 200  0  1000, the population increases and approaches

1000. For 0  1000, the population decreases and approaches 1000.

The equilibrium solutions are  () = 200 and  () = 1000.

(c)



= 


1− 




1− 




= 


 − 




 −




=




( −  )( −) ⇔




( −  )( −)
=





. By partial fractions,

1

( −  )( −)
=



 − 
+



 −
, so

( −) +( −  ) = 1.

If  = ,  =
1

 −
; if  =  ,  =

1

 −
, so

1

 −

 
1

 − 
+

1

 −


 =





 ⇒

1

 −
(− ln | −  |+ ln | −|) =




 +  ⇒ 1

 −
ln

  −

 − 

 =



 +  ⇒

ln

  −

 − 

 = ( −)



+ 1 ⇔  −

 − 
= (−)() [ = ±1 ].

Let  = 0:
0 −

 − 0

= . So
 −

 − 
=

0 −

 − 0

(−)().

Solving for  , we get  () =
( − 0) +(0 −)(−)()

 − 0 + (0 −)(−)()
.

(d) If 0  , then 0 −  0. Let () be the numerator of the expression for  () in part (c). Then

(0) = 0( −)  0, and 0 −  0 ⇔ lim
→∞

(0 −)(−)() = −∞ ⇒ lim
→∞

() = −∞.

Since is continuous, there is a number  such that() = 0 and thus  () = 0. So the species will become extinct.

22. (a)



=  ln







 ⇒




 ln( )
=


 . Let  = ln







= ln − ln ⇒  = −


⇒


−


=  + ⇒ ln|| = −− ⇒ || = −(+) ⇒ |ln( )| = −(+) ⇒
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