Section 7.8 Improper Integrals

68. Improper Integrals that Are Both Type 1 and Type 2

The integral $\int_{a}^{\infty} f(x) d x$ is improper because the interval $[a, \infty)$ is infinite. If f has an infinite discontinuity at a, then the integral is improper for a second reason. In this case we evaluate the integral by expressing it as a sum of improper integral of Type 2and Type 1 as follows:

$$
\int_{a}^{\infty} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{\infty} f(x) d x \quad c>a
$$

Evaluate the given integral if it is convergent.

$$
\int_{2}^{\infty} \frac{1}{x \sqrt{x^{2}-4}} d x
$$

Solution:

$\int_{2}^{\infty} \frac{d x}{x \sqrt{x^{2}-4}}=\int_{2}^{3} \frac{d x}{x \sqrt{x^{2}-4}}+\int_{3}^{\infty} \frac{d x}{x \sqrt{x^{2}-4}}=\lim _{t \rightarrow 2^{+}} \int_{t}^{3} \frac{d x}{x \sqrt{x^{2}-4}}+\lim _{t \rightarrow \infty} \int_{3}^{t} \frac{d x}{x \sqrt{x^{2}-4}}$. Now
$\int \frac{d x}{x \sqrt{x^{2}-4}}=\int \frac{2 \sec \theta \tan \theta d \theta}{2 \sec \theta 2 \tan \theta} \quad\left[\begin{array}{c}x=2 \sec \theta \text {, where } \\ 0 \leq \theta<\pi / 2 \text { or } \pi \leq \theta<3 \pi / 2\end{array}\right]=\frac{1}{2} \theta+C=\frac{1}{2} \sec ^{-1}\left(\frac{1}{2} x\right)+C$, so
$\int_{2}^{\infty} \frac{d x}{x \sqrt{x^{2}-4}}=\lim _{t \rightarrow 2^{+}}\left[\frac{1}{2} \sec ^{-1}\left(\frac{1}{2} x\right)\right]_{t}^{3}+\lim _{t \rightarrow \infty}\left[\frac{1}{2} \sec ^{-1}\left(\frac{1}{2} x\right)\right]_{3}^{t}=\frac{1}{2} \sec ^{-1}\left(\frac{3}{2}\right)-0+\frac{1}{2}\left(\frac{\pi}{2}\right)-\frac{1}{2} \sec ^{-1}\left(\frac{3}{2}\right)=\frac{\pi}{4}$.
70. Find the values of p for which the integral converges and evaluate the integral for those values of p.

$$
\int_{e}^{\infty} \frac{1}{x(\ln x)^{p}} d x
$$

Solution:

Let $u=\ln x$. Then $d u=d x / x \Rightarrow \int_{e}^{\infty} \frac{1}{x(\ln x)^{p}} d x=\int_{1}^{\infty} \frac{d u}{u^{p}}$. By Example 4, this converges to $\frac{1}{p-1}$ if $p>1$ and diverges otherwise.
74. The average speed of molecules in an ideal gas is

$$
\bar{v}=\frac{4}{\sqrt{\pi}}\left(\frac{M}{2 R T}\right)^{3 / 2} \int_{0}^{\infty} v^{3} e^{-M v^{2} /(2 R T)} d v
$$

where M is the molecular weight of the gas, R is the gas constant, T is the gas temperature, and v is the molecular speed. Show that

$$
\bar{v}=\sqrt{\frac{8 R T}{\pi M}}
$$

Solution:

Let $k=\frac{M}{2 R T}$ so that $\bar{v}=\frac{4}{\sqrt{\pi}} k^{3 / 2} \int_{0}^{\infty} v^{3} e^{-k v^{2}} d v$. Let I denote the integral and use parts to integrate I. Let $\alpha=v^{2}$,
$d \beta=v e^{-k v^{2}} d v \quad \Rightarrow \quad d \alpha=2 v d v, \beta=-\frac{1}{2 k} e^{-k v^{2}}:$

$$
\begin{aligned}
I & =\lim _{t \rightarrow \infty}\left[-\frac{1}{2 k} v^{2} e^{-k v^{2}}\right]_{0}^{t}+\frac{1}{k} \int_{0}^{\infty} v e^{-k v^{2}} d v_{0}^{t}=-\frac{1}{2 k} \lim _{t \rightarrow \infty}\left(t^{2} e^{-k t^{2}}\right)+\frac{1}{k} \lim _{t \rightarrow \infty}\left[-\frac{1}{2 k} e^{-k v^{2}}\right] \\
& \stackrel{\mathrm{H}}{=}-\frac{1}{2 k} \cdot 0-\frac{1}{2 k^{2}}(0-1)=\frac{1}{2 k^{2}}
\end{aligned}
$$

Thus, $\bar{v}=\frac{4}{\sqrt{\pi}} k^{3 / 2} \cdot \frac{1}{2 k^{2}}=\frac{2}{(k \pi)^{1 / 2}}=\frac{2}{[\pi M /(2 R T)]^{1 / 2}}=\frac{2 \sqrt{2} \sqrt{R T}}{\sqrt{\pi M}}=\sqrt{\frac{8 R T}{\pi M}}$.
75. We know from Example 1 that the region $\mathfrak{R}=\{(x, y) \mid x \geq 1,0 \leq y \leq 1 / x\}$ has infinite area. Show that by rotating \mathfrak{R} about the x-axis we obtain a solid with finite volume.

Solution:

Volume $=\int_{1}^{\infty} \pi\left(\frac{1}{x}\right)^{2} d x=\pi \lim _{t \rightarrow \infty} \int_{1}^{t} \frac{d x}{x^{2}}=\pi \lim _{t \rightarrow \infty}\left[-\frac{1}{x}\right]_{1}^{t}=\pi \lim _{t \rightarrow \infty}\left(1-\frac{1}{t}\right)=\pi<\infty$.
80. As we saw in Section 3.8, a radioactive substance decays exponentially: The mass at time t is $m(t)=m(0) e^{k t}$, where $m(0)$ is the initial mass and k is a negative constant. The mean life M of an atom in the substance is

$$
M=-k \int_{0}^{\infty} t e^{k t} d t
$$

For the radioactive carbon isotope, ${ }^{14} \mathrm{C}$, used in radiocarbon dating, the value of k is -0.000121 . Find the mean life of a ${ }^{14} \mathrm{C}$ atom.

Solution:

$$
I=\int_{0}^{\infty} t e^{k t} d t=\lim _{s \rightarrow \infty}\left[\frac{1}{k^{2}}(k t-1) e^{k t}\right]_{0}^{s} \quad[\text { Formula } 96, \text { or parts }]=\lim _{s \rightarrow \infty}\left[\left(\frac{1}{k} s e^{k s}-\frac{1}{k^{2}} e^{k s}\right)-\left(-\frac{1}{k^{2}}\right)\right]
$$

Since $k<0$ the first two terms approach 0 (you can verify that the first term does so with l'Hospital's Rule), so the limit is equal to $1 / k^{2}$. Thus, $M=-k I=-k\left(1 / k^{2}\right)=-1 / k=-1 /(-0.000121) \approx 8264.5$ years.
89. Show that $\int_{0}^{\infty} x^{2} e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d x$.

Solution:

We use integration by parts: let $u=x, d v=x e^{-x^{2}} d x \quad \Rightarrow \quad d u=d x, v=-\frac{1}{2} e^{-x^{2}}$. So

$$
\int_{0}^{\infty} x^{2} e^{-x^{2}} d x=\lim _{t \rightarrow \infty}\left[-\frac{1}{2} x e^{-x^{2}}\right]_{0}^{t}+\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d x=\lim _{t \rightarrow \infty}\left[-\frac{t}{2 e^{t^{2}}}\right]+\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{\infty} e^{-x^{2}} d x
$$

(The limit is 0 by l'Hospital's Rule.)
92. Find the value of the constant C for which the integral

$$
\int_{0}^{\infty}\left(\frac{x}{x^{2}+1}-\frac{C}{3 x+1}\right) d x
$$

converges. Evaluate the integral for this value of C.

Solution:

$$
\begin{aligned}
I=\int_{0}^{\infty}\left(\frac{x}{x^{2}+1}-\frac{C}{3 x+1}\right) d x & =\lim _{t \rightarrow \infty}\left[\frac{1}{2} \ln \left(x^{2}+1\right)-\frac{1}{3} C \ln (3 x+1)\right]_{0}^{t}=\lim _{t \rightarrow \infty}\left[\ln \left(t^{2}+1\right)^{1 / 2}-\ln (3 t+1)^{C / 3}\right] \\
& =\lim _{t \rightarrow \infty}\left(\ln \frac{\left(t^{2}+1\right)^{1 / 2}}{(3 t+1)^{C / 3}}\right)=\ln \left(\lim _{t \rightarrow \infty} \frac{\sqrt{t^{2}+1}}{(3 t+1)^{C / 3}}\right)
\end{aligned}
$$

For $C \leq 0$, the integral diverges. For $C>0$, we have

$$
L=\lim _{t \rightarrow \infty} \frac{\sqrt{t^{2}+1}}{(3 t+1)^{C / 3}} \stackrel{H}{=} \lim _{t \rightarrow \infty} \frac{t / \sqrt{t^{2}+1}}{C(3 t+1)^{(C / 3)-1}}=\frac{1}{C} \lim _{t \rightarrow \infty} \frac{1}{(3 t+1)^{(C / 3)-1}}
$$

For $C / 3<1 \quad \Leftrightarrow \quad C<3, L=\infty$ and I diverges.
For $C=3, L=\frac{1}{3}$ and $I=\ln \frac{1}{3}$.
For $C>3, L=0$ and I diverges to $-\infty$.

