Section 7.3 Trigonometric Substitution

20. Evaluate the integral. $\int_{0}^{1} \frac{d x}{\left(x^{2}+1\right)^{2}}$

Solution:

Let $x=\tan \theta$, so $d x=\sec ^{2} \theta d \theta, x=0 \Rightarrow \theta=0$, and $x=1 \Rightarrow \theta=\frac{\pi}{4}$. Then

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{\left(x^{2}+1\right)^{2}} & =\int_{0}^{\pi / 4} \frac{\sec ^{2} \theta d \theta}{\left(\tan ^{2} \theta+1\right)^{2}}=\int_{0}^{\pi / 4} \frac{\sec ^{2} \theta d \theta}{\left(\sec ^{2} \theta\right)^{2}} \\
& =\int_{0}^{\pi / 4} \cos ^{2} \theta d \theta=\int_{0}^{\pi / 4} \frac{1}{2}(1+\cos 2 \theta) d \theta \\
& =\frac{1}{2}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{0}^{\pi / 4}=\frac{1}{2}\left[\left(\frac{\pi}{4}+\frac{1}{2}\right)-0\right]=\frac{\pi}{8}+\frac{1}{4}
\end{aligned}
$$

30. Evaluate the integral. $\int_{0}^{1} \sqrt{x-x^{2}} d x$

Solution:

$$
\begin{aligned}
\int_{0}^{1} \sqrt{x-x^{2}} d x & =\int_{0}^{1} \sqrt{\frac{1}{4}-\left(x^{2}-x+\frac{1}{4}\right)} d x=\int_{0}^{1} \sqrt{\frac{1}{4}-\left(x-\frac{1}{2}\right)^{2}} d x \\
& =\int_{-\pi / 2}^{\pi / 2} \sqrt{\frac{1}{4}-\frac{1}{4} \sin ^{2} \theta} \frac{1}{2} \cos \theta d \theta \quad\left[\begin{array}{r}
x-\frac{1}{2}=\frac{1}{2} \sin \theta \\
d x=\frac{1}{2} \cos \theta d \theta
\end{array}\right] \\
& =2 \int_{0}^{\pi / 2} \frac{1}{2} \cos \theta \frac{1}{2} \cos \theta d \theta=\frac{1}{2} \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta=\frac{1}{2} \int_{0}^{\pi / 2} \frac{1}{2}(1+\cos 2 \theta) d \theta \\
& =\frac{1}{4}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{0}^{\pi / 2}=\frac{1}{4}\left(\frac{\pi}{2}\right)=\frac{\pi}{8}
\end{aligned}
$$

39. Find the average value of $f(x)=\sqrt{x^{2}-1} / x, 1 \leq x \leq 7$.

Solution:

The average value of $f(x)=\sqrt{x^{2}-1} / x$ on the interval $[1,7]$ is

$$
\begin{aligned}
\frac{1}{7-1} \int_{1}^{7} \frac{\sqrt{x^{2}-1}}{x} d x & =\frac{1}{6} \int_{0}^{\alpha} \frac{\tan \theta}{\sec \theta} \cdot \sec \theta \tan \theta d \theta \quad\left[\begin{array}{c}
\text { where } x=\sec \theta, d x=\sec \theta \tan \theta d \theta, \\
\sqrt{x^{2}-1}=\tan \theta, \operatorname{and} \alpha=\sec ^{-1} 7
\end{array}\right] \\
& =\frac{1}{6} \int_{0}^{\alpha} \tan ^{2} \theta d \theta=\frac{1}{6} \int_{0}^{\alpha}\left(\sec ^{2} \theta-1\right) d \theta=\frac{1}{6}[\tan \theta-\theta]_{0}^{\alpha} \\
& =\frac{1}{6}(\tan \alpha-\alpha)=\frac{1}{6}\left(\sqrt{48}-\sec ^{-1} 7\right)
\end{aligned}
$$

45. (a) Use trigonometric substitution to verify that

$$
\int_{0}^{x} \sqrt{a^{2}-t^{2}} d t=\frac{1}{2} a^{2} \sin ^{-1}\left(\frac{x}{a}\right)+\frac{1}{2} x \sqrt{a^{2}-x^{2}}
$$

(b) Use the figure to give trigonometric interpretations of both terms on the right side of the equation in part (a).

Solution:

(a) Let $t=a \sin \theta, d t=a \cos \theta d \theta, t=0 \quad \Rightarrow \quad \theta=0$ and $t=x \quad \Rightarrow$ $\theta=\sin ^{-1}(x / a)$. Then

$$
\begin{aligned}
\int_{0}^{x} \sqrt{a^{2}-t^{2}} d t & =\int_{0}^{\sin ^{-1}(x / a)} a \cos \theta(a \cos \theta d \theta)=a^{2} \int_{0}^{\sin ^{-1}(x / a)} \cos ^{2} \theta d \theta \\
& =\frac{a^{2}}{2} \int_{0}^{\sin ^{-1}(x / a)}(1+\cos 2 \theta) d \theta=\frac{a^{2}}{2}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{0}^{\sin ^{-1}(x / a)}=\frac{a^{2}}{2}[\theta+\sin \theta \cos \theta]_{0}^{\sin ^{2}-1}(x / a) \\
& =\frac{a^{2}}{2}\left[\left(\sin ^{-1}\left(\frac{x}{a}\right)+\frac{x}{a} \cdot \frac{\sqrt{a^{2}-x^{2}}}{a}\right)-0\right]=\frac{1}{2} a^{2} \sin ^{-1}(x / a)+\frac{1}{2} x \sqrt{a^{2}-x^{2}}
\end{aligned}
$$

(b) The integral $\int_{0}^{x} \sqrt{a^{2}-t^{2}} d t$ represents the area under the curve $y=\sqrt{a^{2}-t^{2}}$ between the vertical lines $t=0$ and $t=x$. The figure shows that this area consists of a triangular region and a sector of the circle $t^{2}+y^{2}=a^{2}$. The triangular region has base x and height $\sqrt{a^{2}-x^{2}}$, so its area is $\frac{1}{2} x \sqrt{a^{2}-x^{2}}$. The sector has area $\frac{1}{2} a^{2} \theta=\frac{1}{2} a^{2} \sin ^{-1}(x / a)$.
47. A torus is generated by rotating the circle $x^{2}+(y-R)^{2}=r^{2}$ about the x-axis. Find the volume enclosed by the torus.

Solution:

We use cylindrical shells and assume that $R>r . x^{2}=r^{2}-(y-R)^{2} \Rightarrow x= \pm \sqrt{r^{2}-(y-R)^{2}}$, so $g(y)=2 \sqrt{r^{2}-(y-R)^{2}}$ and

$$
\begin{aligned}
V & =\int_{R-r}^{R+r} 2 \pi y \cdot 2 \sqrt{r^{2}-(y-R)^{2}} d y=\int_{-r}^{r} 4 \pi(u+R) \sqrt{r^{2}-u^{2}} d u \quad[\text { where } u=y-R] \\
& =4 \pi \int_{-r}^{r} u \sqrt{r^{2}-u^{2}} d u+4 \pi R \int_{-r}^{r} \sqrt{r^{2}-u^{2}} d u \quad\left[\begin{array}{c}
\text { where } u=r \sin \theta, d u=r \cos \theta d \theta \\
\text { in the second integral }
\end{array}\right] \\
& =4 \pi\left[-\frac{1}{3}\left(r^{2}-u^{2}\right)^{3 / 2}\right]_{-r}^{r}+4 \pi R \int_{-\pi / 2}^{\pi / 2} r^{2} \cos ^{2} \theta d \theta=-\frac{4 \pi}{3}(0-0)+4 \pi R r^{2} \int_{-\pi / 2}^{\pi / 2} \cos ^{2} \theta d \theta \\
& =2 \pi R r^{2} \int_{-\pi / 2}^{\pi / 2}(1+\cos 2 \theta) d \theta=2 \pi R r^{2}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{-\pi / 2}^{\pi / 2}=2 \pi^{2} R r^{2}
\end{aligned}
$$

Another method: Use washers instead of shells, so $V=8 \pi R \int_{0}^{r} \sqrt{r^{2}-y^{2}} d y$ as in Exercise 6.2.63(a), but evaluate the integral using $y=r \sin \theta$.
49. Find the area of the crescent-shaped region (called a lune) bounded by arcs of circles with radii r and R. (See the figure.)

Solution:

Let the equation of the large circle be $x^{2}+y^{2}=R^{2}$. Then the equation of the small circle is $x^{2}+(y-b)^{2}=r^{2}$, where $b=\sqrt{R^{2}-r^{2}}$ is the distance between the centers of the circles. The desired area is

$$
\begin{aligned}
A & =\int_{-r}^{r}\left[\left(b+\sqrt{r^{2}-x^{2}}\right)-\sqrt{R^{2}-x^{2}}\right] d x \\
& =2 \int_{0}^{r}\left(b+\sqrt{r^{2}-x^{2}}-\sqrt{R^{2}-x^{2}}\right) d x \\
& =2 \int_{0}^{r} b d x+2 \int_{0}^{r} \sqrt{r^{2}-x^{2}} d x-2 \int_{0}^{r} \sqrt{R^{2}-x^{2}} d x
\end{aligned}
$$

The first integral is just $2 b r=2 r \sqrt{R^{2}-r^{2}}$. The second integral represents the area of a quarter-circle of radius r, so its value is $\frac{1}{4} \pi r^{2}$. To evaluate the other integral, note that

$$
\begin{aligned}
\int \sqrt{a^{2}-x^{2}} d x & =\int a^{2} \cos ^{2} \theta d \theta \quad[x=a \sin \theta, d x=a \cos \theta d \theta]=\left(\frac{1}{2} a^{2}\right) \int(1+\cos 2 \theta) d \theta \\
& =\frac{1}{2} a^{2}\left(\theta+\frac{1}{2} \sin 2 \theta\right)+C=\frac{1}{2} a^{2}(\theta+\sin \theta \cos \theta)+C \\
& =\frac{a^{2}}{2} \arcsin \left(\frac{x}{a}\right)+\frac{a^{2}}{2}\left(\frac{x}{a}\right) \frac{\sqrt{a^{2}-x^{2}}}{a}+C=\frac{a^{2}}{2} \arcsin \left(\frac{x}{a}\right)+\frac{x}{2} \sqrt{a^{2}-x^{2}}+C
\end{aligned}
$$

Thus, the desired area is

$$
\begin{aligned}
A & =2 r \sqrt{R^{2}-r^{2}}+2\left(\frac{1}{4} \pi r^{2}\right)-\left[R^{2} \arcsin (x / R)+x \sqrt{R^{2}-x^{2}}\right]_{0}^{r} \\
& =2 r \sqrt{R^{2}-r^{2}}+\frac{1}{2} \pi r^{2}-\left[R^{2} \arcsin (r / R)+r \sqrt{R^{2}-r^{2}}\right]=r \sqrt{R^{2}-r^{2}}+\frac{\pi}{2} r^{2}-R^{2} \arcsin (r / R)
\end{aligned}
$$

