
Section 6.5 Average Value of a Function

13. If f is continuous and
∫ 3

1
f(x)dx = 8, show that f takes on the value 4 at least once on the interval [1, 3].

Solution:

SECTION 6.5 AVERAGE VALUE OF A FUNCTION ¤ 601

11. (a) ave =
1

 − 0

 

0

(2 sin− sin 2) 

= 1


−2 cos+ 1
2

cos 2

0

= 1



2 + 1

2

− −2 + 1
2


= 4



(c)

(b) () = ave ⇔ 2 sin − sin 2 = 4


⇔
 = 1 ≈ 1238 or  = 2 ≈ 2808

12. (a) ave = 1
2− 0

 2

0
2−

2



= 1
2


−−2

2
0

= 1
2
(−−4 + 1)

(c)

(b) () = ave ⇔ 2−
2

= 1
2
(1− −4) ⇔

 = 1 ≈ 0263 or  = 2 ≈ 1287

13.  is continuous on [1 3], so by the Mean Value Theorem for Integrals there exists a number  in [1 3] such that 3

1
()  = ()(3− 1) ⇒ 8 = 2(); that is, there is a number  such that () = 8

2
= 4.

14. The requirement is that
1

− 0

 

0

()  = 3. The LHS of this equation is equal to

1



 

0


2 + 6− 3

2

 =

1




2+ 3

2 − 
3

0

= 2 + 3− 
2, so we solve the equation 2 + 3− 2 = 3 ⇔

2 − 3+ 1 = 0 ⇔  =
3±


(−3)2 − 4 · 1 · 1

2 · 1 =
3±√5

2
. Both roots are valid since they are positive.

15. Use geometric interpretations to find the values of the integrals. 8

0
() =

 1

0
()  +

 2

1
() +

 3

2
()  +

 4

3
() +

 6

4
() +

 7

6
() +

 8

7
() 

= − 1
2

+ 1
2

+ 1
2

+ 1 + 4 + 3
2

+ 2 = 9

Thus, the average value of  on [0 8] = ave = 1
8− 0

 8

0
()  = 1

8
(9) = 9

8
.

16. (a) ave = 1
12− 0

 12

0
()  = 1

12
. Use the Midpoint Rule with  = 3 and∆ = 12−0

3
= 4 to estimate .

 ≈3 = 4[(2) + (6) + (10)] = 4[21 + 50 + 66] = 4(137) = 548. Thus, ave ≈ 1
12

(548) = 45 2
3
kmh.

(b) Estimating from the graph, () = 45 2
3
when  ≈ 52 s.

17. Let  = 0 and  = 12 correspond to 9 AM and 9 PM, respectively.

ave = 1
12− 0

 12

0


20 + 6 sin 1

12


 = 1

12


20− 6 · 12


cos 1

12

12
0

= 1
12


20 · 12 + 6 · 12


+ 6 · 12




=

20 + 12



 ◦C ≈ 24◦C

18. ave =
1

− 0

 

0

()  =
1



 

0



4
(

2 − 
2
)  =



4




2
 − 1

3

3

0

=


4


2
3




3
=

2

6


Since () is decreasing on (0 ], max = (0) =
2

4
. Thus, ave = 2

3
max.
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25. Use the diagram to show that if f is concave upward on [a, b], then

fave > f

(
a+ b

2

)
464	 Chapter 6    Applications of Integration

APPLIED Project	 CALCULUS AND BASEBALL

In this project we explore three of the many applications of calculus to baseball. The physical inter-
actions of the game, especially the collision of ball and bat, are quite complex and their models are 
discussed in detail in a book by Robert Adair, The Physics of Baseball, 3d ed. (New York, 2002).

1.	� �It may surprise you to learn that the collision of baseball and bat lasts only about a thou-
sandth of a second. Here we calculate the average force on the bat during this collision by 
first computing the change in the ball’s momentum.

	��     The momentum p of an object is the product of its mass m and its velocity v, that is, 
p − mv. Suppose an object, moving along a straight line, is acted on by a force F − Fstd 
that is a continuous function of time.

	� (a)	� Show that the change in momentum over a time interval ft0, t1g is equal to the integral  
of F from t0 to t1; that is, show that

pst1d 2 pst0 d − y t1

t0

 Fstd dt

		�  This integral is called the impulse of the force over the time interval.
	� (b)	� A pitcher throws a 90-miyh fastball to a batter, who hits a line drive directly back 

to the pitcher. The ball is in contact with the bat for 0.001 s and leaves the bat with 
velocity 110 miyh. A baseball weighs 5 oz and, in US Customary units, its mass is 
measured in slugs: m − wyt, where t − 32 ftys2.

	 (i)	 Find the change in the ball’s momentum.
	 (ii)	 Find the average force on the bat.

2.	�� In this problem we calculate the work required for a pitcher to throw a 90-miyh fastball by 
first considering kinetic energy.

	� �    The kinetic energy K of an object of mass m and velocity v is given by K − 1
2 mv2.  

Suppose an object of mass m, moving in a straight line, is acted on by a force F − Fssd 
that depends on its position s. According to Newton’s Second Law

Fssd − ma − m 
dv

dt

	� where a and v denote the acceleration and velocity of the object. 
�	 (a)	� Show that the work done in moving the object from a position s0 to a position s1 is 

equal to the change in the object’s kinetic energy; that is, show that

W − ys1

s0

 Fssd ds − 1
2 mv1

22 1
2 mv0

2

	24.	� �Use the diagram to show that if f  is concave upward on fa, bg, 
then

fave . fS a 1 b

2 D

x

y

0 a ba+b
2

f

	25.	� �Prove the Mean Value Theorem for Integrals by applying 
the Mean Value Theorem for derivatives (see Section 4.2) 
to the function Fsxd − yx

a f std dt.

	26.	� �If fave fa, bg denotes the average value of f  on the interval 
fa, bg and a , c , b, show that

fave fa, bg −
c 2 a

b 2 a
  fave fa, cg 1

b 2 c

b 2 a
  fave fc, bg

An overhead view of the position of a  
baseball bat, shown every fiftieth of a 
second during a typical swing.  
(Adapted from The Physics of Baseball)

Batter’s box
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Solution:

602 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

19. ave =
1

8

 8

0

12√
+ 1

 =
3

2

 8

0

(+ 1)
−12

 =

3
√
 + 1

8
0

= 9− 3 = 6 kgm

20. (a) Similar to Example 3.8.3, we have  = 20◦C and hence



= ( − 20). Let  =  − 20, so that

(0) =  (0)− 20 = 95− 20 = 75. Now  satisfies (3.8.2), so  = 75. We are given that  (30) = 61, so

(30) = 61− 20 = 41 and 41 = 75(30) ⇒ 41
75

= 30 ⇒ 30 = ln 41
75

⇒  = 1
30

ln 41
75
≈ −0020131.

Thus,  () = 20 + 75−, where  = − ≈ 002.

(b) ave = 1
30− 0

 30

0
 ()  = 1

30

 30

0
(20 + 75−)  = 1

30


20− 75


−

30
0

= 1
30


600− 75


−30

− 0− 75



= 1

30


600− 75


· 41

75
+ 75




= 1

30


600 + 34




= 20 + 34

30
≈ 763◦C

21. ave = 1
50−0

 50

0
 ()  = 1

50

 50

0
2560  [with  = 0017185]

=
2560

50


1



50
0

=
2560

50
(50 − 1) ≈ 4056 million, or about 4 billion people

22.  = 1
2
2 ⇒  =


2 [since  ≥ 0]. Now  =  =  = 


2 =

√
2 ⇒ 2 = 2 ⇒  =

2

2
.

We see that  can be regarded as a function of  or of :  =  () =  and  = () =
√

2. Note that  =  ( ) =  .

Displacement can be viewed as a function of :  = () = 1
2
2; also () =

2

2
=

[ ()]2

2
. When  =  , these two

formulas for () imply that 
2( ) =  ( ) =  =  = 2


1
2
 2


 = 2( ) ()

The average of the velocities with respect to time  during the interval [0  ] is

-ave = ave =
1

 − 0

 

0

 ()  =
1


[( )− (0)] [by FTC] =

( )


[since (0) = 0] =

1

2
 [by ()]

But the average of the velocities with respect to displacement  during the corresponding displacement interval

[(0) ( )] = [0 ( )] is

-ave = ave =
1

( )− 0

 ( )

0

()  =
1

( )

 ( )

0


2  =

√
2

( )

 ( )

0


12



=

√
2

( )
· 2

3


32

( )

0
=

2

3
·
√

2

( )
·

( )

32
=

2

3


2( ) =

2

3
 [by ()]

23. ave = 1
5

 5

0
 ()  = 1

5

 5

0
5
4


1− cos


2
5


 = 1

4

 5

0


1− cos


2
5




= 1
4


− 5

2
sin


2
5

5

0
= 1

4
[(5− 0)− 0] = 5

4
≈ 04 L

24. ave = 1
− 

 

() 

 1
− 

(area of trapezoid  )

= 1
− 

(area of rectangle  )

= 1
− 




+ 

2

 · (− )


= 

+ 

2


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fave[a, b] =

(
c− a

b− a

)
fave[a, c] +

(
b− c

b− a

)
fave[c, b]

Solution:

APPLIED PROJECT CALCULUS AND BASEBALL ¤ 603

25. Let  () =
 

()  for  in [ ]. Then  is continuous on [ ] and differentiable on ( ), so by the Mean Value

Theorem there is a number  in ( ) such that  ()−  () =  0()(− ). But  0() = () by the Fundamental

Theorem of Calculus. Therefore,
 

() − 0 = ()(− ).

26. ave [ ] =
1

− 

 



()  =
1

− 

 



() +
1

− 

 



() 

=
− 

− 


1

− 

 



() 


+

− 

− 


1

− 

 



() 


=

− 

− 
ave [ ] +

− 

− 
ave [ ]

APPLIED PROJECT Calculus and Baseball

1. (a)  =  = 



, so by the Substitution Rule we have

 1

0

 ()  =

 1

0









 = 

 1

0

 =


1
0

= 1 −0 = (1)− (0)

(b) (i) We have 1 = 110 mih =
110(5280)

3600
fts = 1613 fts, 0 = −90 mih = −132 fts, and the mass of the

baseball is =



=

516

32
= 5

512
. So the change in momentum is

(1)− (0) = 1 −0 = 5
512

[1613− (−132)] ≈ 286 slug-fts.

(ii) From part (a) and part (b)(i), we have
 0001

0
 ()  = (0001)− (0) ≈ 286, so the average force over the

interval [0 0001] is 1
0001

 0001

0
 ()  ≈ 1

0001
(286) = 2860 lb.

2. (a)  =

 1

0

 () , where  () = 



= 








= 




and so, by the Substitution Rule,

 =

 1

0

 ()  =

 1

0





 =

 (1)

(0)

  =


1
2


2
1
0

= 1
2


2
1 − 1

2


2
0

(b) From part (b)(i), 90 mih = 132 fts. Assume 0 = (0) = 0 and 1 = (1) = 132 fts [note that 1 is the point of

release of the baseball].  = 5
512

, so the work done is = 1
2
2

1 − 1
2
2

0 = 1
2
· 5

512
· (132)2 ≈ 85 ft-lb.

3. (a) Here we have a differential equation of the form  = , so by Theorem 3.8.2, the solution is () = (0).

In this case  = − 1
10

and (0) = 100 fts, so () = 100−10. We are interested in the time  that the ball takes to travel

280 ft, so we find the distance function

() =
 
0
()  =

 
0

100−10  = 100

−10−10


0

= −1000(−10 − 1) = 1000(1− −10)

Now we set () = 280 and solve for : 280 = 1000(1− −10) ⇒ 1− −10 = 7
25

⇒

− 1
10
 = ln


1− 7

25

 ⇒  ≈ 3285 seconds.
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