Section 6.5 Average Value of a Function

13. If f is continuous and $\int_{1}^{3} f(x) d x=8$, show that f takes on the value 4 at least once on the interval $[1,3]$.

Solution:

f is continuous on $[1,3]$, so by the Mean Value Theorem for Integrals there exists a number c in $[1,3]$ such that $\int_{1}^{3} f(x) d x=f(c)(3-1) \Rightarrow 8=2 f(c) ;$ that is, there is a number c such that $f(c)=\frac{8}{2}=4$.
25. Use the diagram to show that if f is concave upward on $[a, b]$, then

$$
f_{\text {ave }}>f\left(\frac{a+b}{2}\right)
$$

Solution:

$$
\begin{aligned}
f_{\text {ave }} & =\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& >\frac{1}{b-a} \quad(\text { area of trapezoid } A B D F) \\
& =\frac{1}{b-a} \quad(\text { area of rectangle } A C E F) \\
& =\frac{1}{b-a}\left[f\left(\frac{a+b}{2}\right) \cdot(b-a)\right] \\
& =f\left(\frac{a+b}{2}\right)
\end{aligned}
$$

26. Let $f_{\text {ave }}[a, b]$ denote the average value of f on the interval $[a, b]$. Show that if $a<c<b$, then

$$
f_{\mathrm{ave}}[a, b]=\left(\frac{c-a}{b-a}\right) f_{\mathrm{ave}}[a, c]+\left(\frac{b-c}{b-a}\right) f_{\mathrm{ave}}[c, b]
$$

Solution:

$$
\begin{aligned}
f_{\text {ave }}[a, b] & =\frac{1}{b-a} \int_{a}^{b} f(x) d x=\frac{1}{b-a} \int_{a}^{c} f(x) d x+\frac{1}{b-a} \int_{c}^{b} f(x) d x \\
& =\frac{c-a}{b-a}\left[\frac{1}{c-a} \int_{a}^{c} f(x) d x\right]+\frac{b-c}{b-a}\left[\frac{1}{b-c} \int_{c}^{b} f(x) d x\right]=\frac{c-a}{b-a} f_{\text {ave }}[a, c]+\frac{b-c}{b-a} f_{\text {ave }}[c, b]
\end{aligned}
$$

