Section 6.1 Areas Between Curves

18. Sketch the region enclosed by the given curves. Decide whether to integrate with respect to x or y. Draw a typical approximating rectangle and label its height and width. Then find the area of the region.

$$
4 x+y^{2}=12, \quad x=y
$$

Solution:

$$
\begin{aligned}
& 4 x+x^{2}=12 \quad \Leftrightarrow \quad(x+6)(x-2)=0 \quad \Leftrightarrow \\
& x=-6 \text { or } x=2, \text { so } y=-6 \text { or } y=2 \text { and } \\
& \begin{aligned}
A & =\int_{-6}^{2}\left[\left(-\frac{1}{4} y^{2}+3\right)-y\right] d y \\
& =\left[-\frac{1}{12} y^{3}-\frac{1}{2} y^{2}+3 y\right]_{-6}^{2} \\
& =\left(-\frac{2}{3}-2+6\right)-(18-18-18) \\
& =22-\frac{2}{3}=\frac{64}{3}
\end{aligned}
\end{aligned}
$$

31. Sketch the region enclosed by the given curves and find its area.

$$
y=x^{4}, \quad y=2-|x|
$$

Solution:

By inspection, we see that the curves intersect at $x= \pm 1$ and that the area of the region enclosed by the curves is twice the area enclosed in the first quadrant.

$$
\begin{aligned}
A & =2 \int_{0}^{1}\left[(2-x)-x^{4}\right] d x=2\left[2 x-\frac{1}{2} x^{2}-\frac{1}{5} x^{5}\right]_{0}^{1} \\
& =2\left[\left(2-\frac{1}{2}-\frac{1}{5}\right)-0\right]=2\left(\frac{13}{10}\right)=\frac{13}{5}
\end{aligned}
$$

42. Use calculus to find the area of the triangle with the given vertices. $(2,0),(0,2),(-1,1)$.

Solution:

An equation of the line through $(2,0)$ and $(0,2)$ is $y=-x+2$; through $(2,0)$ and $(-1,1)$ is $y=-\frac{1}{3} x+\frac{2}{3}$; through $(0,2)$ and $(-1,1)$ is $y=x+2$.

$$
\begin{aligned}
A & =\int_{-1}^{0}\left[(x+2)-\left(-\frac{1}{3} x+\frac{2}{3}\right)\right] d x+\int_{0}^{2}\left[(-x+2)-\left(-\frac{1}{3} x+\frac{2}{3}\right)\right] d x \\
& =\int_{-1}^{0}\left(\frac{4}{3} x+\frac{4}{3}\right) d x+\int_{0}^{2}\left(-\frac{2}{3} x+\frac{4}{3}\right) d x \\
& =\left[\frac{2}{3} x^{2}+\frac{4}{3} x\right]_{-1}^{0}+\left[-\frac{1}{3} x^{2}+\frac{4}{3} x\right]_{0}^{2} \\
& =0-\left(\frac{2}{3}-\frac{4}{3}\right)+\left(-\frac{4}{3}+\frac{8}{3}\right)-0=2
\end{aligned}
$$

43. Evaluate the integral and interpret it as the area of a region. Sketch the region.

$$
\int_{0}^{\frac{\pi}{2}}|\sin x-\cos 2 x| d x
$$

Solution:

The curves intersect when $\sin x=\cos 2 x \quad($ on $[0, \pi / 2]) \quad \Leftrightarrow \sin x=1-2 \sin ^{2} x \quad \Leftrightarrow \quad 2 \sin ^{2} x+\sin x-1=0 \Leftrightarrow$ $(2 \sin x-1)(\sin x+1)=0 \Rightarrow \sin x=\frac{1}{2} \quad \Rightarrow \quad x=\frac{\pi}{6}$.

$$
\begin{aligned}
A & =\int_{0}^{\pi / 2}|\sin x-\cos 2 x| d x \\
& =\int_{0}^{\pi / 6}(\cos 2 x-\sin x) d x+\int_{\pi / 6}^{\pi / 2}(\sin x-\cos 2 x) d x \\
& =\left[\frac{1}{2} \sin 2 x+\cos x\right]_{0}^{\pi / 6}+\left[-\cos x-\frac{1}{2} \sin 2 x\right]_{\pi / 6}^{\pi / 2} \\
& =\left(\frac{1}{4} \sqrt{3}+\frac{1}{2} \sqrt{3}\right)-(0+1)+(0-0)-\left(-\frac{1}{2} \sqrt{3}-\frac{1}{4} \sqrt{3}\right) \\
& =\frac{3}{2} \sqrt{3}-1
\end{aligned}
$$

62. The figure shows graphs of the marginal revenue function R^{\prime} and the marginal cost function C^{\prime} for a manufacturer. [Recall from Section 4.7 that $R(x)$ and $C(x)$ represent the revenue and cost when x units are manufactured. Assume that R and C are measured in thousands of dollars.] What is the meaning of the area of the shaded region? Use the Midpoint Rule to estimate the value of this quantity.

Solution:

The area under $R^{\prime}(x)$ from $x=50$ to $x=100$ represents the change in revenue, and the area under $C^{\prime}(x)$ from $x=50$ to $x=100$ represents the change in cost. The shaded region represents the difference between these two values; that is, the increase in profit as the production level increases from 50 units to 100 units. We use the Midpoint Rule with $n=5$ and $\Delta x=10$:

$$
\begin{aligned}
M_{5} & =\Delta x\left\{\left[R^{\prime}(55)-C^{\prime}(55)\right]+\left[R^{\prime}(65)-C^{\prime}(65)\right]+\left[R^{\prime}(75)-C^{\prime}(75)\right]+\left[R^{\prime}(85)-C^{\prime}(85)\right]+\left[R^{\prime}(95)-C^{\prime}(95)\right]\right\} \\
& \approx 10(2.40-0.85+2.20-0.90+2.00-1.00+1.80-1.10+1.70-1.20) \\
& =10(5.05)=50.5 \text { thousand dollars }
\end{aligned}
$$

Using M_{1} would give us $50(2-1)=50$ thousand dollars.

