Section 5.4 Indefinite Integrals and the Net Change Theorem

22. Find the general indefinite integral. $\int \sec t(\sec t+\tan t) d t$

Solution:

$\int \sec t(\sec t+\tan t) d t=\int\left(\sec ^{2} t+\sec t \tan t\right) d t=\tan t+\sec t+C$
54. Evaluate the definite integral. $\int_{0}^{\frac{3 \pi}{2}}|\sin x| d x$.

Solution:

$$
\int_{0}^{3 \pi / 2}|\sin x| d x=\int_{0}^{\pi} \sin x d x+\int_{\pi}^{3 \pi / 2}(-\sin x) d x=[-\cos x]_{0}^{\pi}+[\cos x]_{\pi}^{3 \pi / 2}=[1-(-1)]+[0-(-1)]=2+1=3
$$

72. The acceleration function (in m / s^{2}) and the initial velocity are given for a particle moving along a line. Find (a) the velocity at time t and (b) the distance traveled during the given time interval.

$$
a(t)=2 t+3, v(0)=-4,0 \leq t \leq 3
$$

Solution:

(a) $v^{\prime}(t)=a(t)=2 t+3 \Rightarrow v(t)=t^{2}+3 t+C \quad \Rightarrow \quad v(0)=C=-4 \quad \Rightarrow \quad v(t)=t^{2}+3 t-4$
(b) Distance traveled $=\int_{0}^{3}\left|t^{2}+3 t-4\right| d t=\int_{0}^{3}|(t+4)(t-1)| d t=\int_{0}^{1}\left(-t^{2}-3 t+4\right) d t+\int_{1}^{3}\left(t^{2}+3 t-4\right) d t$

$$
\begin{aligned}
& =\left[-\frac{1}{3} t^{3}-\frac{3}{2} t^{2}+4 t\right]_{0}^{1}+\left[\frac{1}{3} t^{3}+\frac{3}{2} t^{2}-4 t\right]_{1}^{3} \\
& =\left(-\frac{1}{3}-\frac{3}{2}+4\right)+\left(9+\frac{27}{2}-12\right)-\left(\frac{1}{3}+\frac{3}{2}-4\right)=\frac{89}{6} \mathrm{~m}
\end{aligned}
$$

77. The marginal cost of manufacturing x yards of a certain fabric is

$$
C^{\prime}(x)=3-0.01 x+0.000006 x^{2}
$$

(in dollars per yard). Find the increase in cost if the production level is raised from 2000 yards to 4000 yards.

Solution:

From the Net Change Theorem, the increase in cost if the production level is raised from 2000 m to 4000 m is
$C(4000)-C(2000)=\int_{2000}^{4000} C^{\prime}(x) d x$.

$$
\begin{aligned}
\int_{2000}^{4000} C^{\prime}(x) d x & =\int_{2000}^{4000}\left(3-0.01 x+0.000006 x^{2}\right) d x=\left[3 x-0.005 x^{2}+0.000002 x^{3}\right]_{2000}^{4000} \\
& =60000-2000=\$ 58000
\end{aligned}
$$

