Section 5.2 The Definite Integral

23. Show that the definite integral is equal to $\lim _{n \rightarrow \infty} R_{n}$ and then evaluate the limit.

$$
\int_{0}^{4}\left(x-x^{2}\right) d x, \quad R_{n}=\frac{4}{n} \sum_{i=1}^{n}\left[\frac{4 i}{n}-\frac{16 i^{2}}{n^{2}}\right]
$$

Solution:

$$
\begin{aligned}
& \text { For } \int_{0}^{4}\left(x-x^{2}\right) d x, \Delta x
\end{aligned}=\frac{4-0}{n}=\frac{4}{n} \text {, and } x_{i}=0+i \Delta x=\frac{4 i}{n} \text {. Then } \quad \begin{aligned}
\int_{0}^{4}\left(x-x^{2}\right) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(\frac{4 i}{n}\right) \frac{4}{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\left(\frac{4 i}{n}\right)-\left(\frac{4 i}{n}\right)^{2}\right] \frac{4}{n}=\lim _{n \rightarrow \infty} \frac{4}{n} \sum_{i=1}^{n}\left[\frac{4 i}{n}-\frac{16 i^{2}}{n^{2}}\right]=\lim _{n \rightarrow \infty} R_{n} . \\
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{4}{n} \sum_{i=1}^{n}\left[\frac{4 i}{n}-\frac{16 i^{2}}{n^{2}}\right] & =\lim _{n \rightarrow \infty} \frac{4}{n}\left[\frac{4}{n} \sum_{i=1}^{n} i-\frac{16}{n^{2}} \sum_{i=1}^{n} i^{2}\right]=\lim _{n \rightarrow \infty}\left[\frac{16}{n^{2}} \frac{n(n+1)}{2}-\frac{64}{n^{3}} \frac{n(n+1)(2 n+1)}{6}\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{8}{n}(n+1)-\frac{32}{3 n^{2}}(n+1)(2 n+1)\right] \\
& =\lim _{n \rightarrow \infty}\left[8\left(1+\frac{1}{n}\right)-\frac{32}{3}\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right)\right]=8(1)-\frac{32}{3}(1)(2)=-\frac{40}{3}
\end{aligned}
\end{aligned}
$$

57. Write as a single integral in the form $\int_{a}^{b} f(x) d x$:

$$
\int_{-2}^{2} f(x) d x+\int_{2}^{5} f(x) d x-\int_{-2}^{-1} f(x) d x
$$

Solution:

$$
\begin{aligned}
\int_{-2}^{2} f(x) d x+\int_{2}^{5} f(x) d x-\int_{-2}^{-1} f(x) d x & =\int_{-2}^{5} f(x) d x+\int_{-1}^{-2} f(x) d x & & \text { [by Property } 5 \text { and reversing limits] } \\
& =\int_{-1}^{5} f(x) d x & & {[\text { Property 5] }}
\end{aligned}
$$

60. Find $\int_{0}^{5} f(x) d x$ if

$$
\begin{cases}3 & \text { for } x<3 \\ x & \text { for } x \geq 3\end{cases}
$$

Solution:

If $f(x)=\left\{\begin{array}{ll}3 & \text { for } x<3 \\ x & \text { for } x \geq 3\end{array}\right.$, then $\int_{0}^{5} f(x) d x$ can be interpreted as the area of the shaded region, which consists of a 5-by-3 rectangle surmounted by an isosceles right triangle whose legs have length 2 . Thus, $\int_{0}^{5} f(x) d x=5(3)+\frac{1}{2}(2)(2)=17$.

61. For the function f whose graph is shown, list the following quantities in increasing order, from smallest to largest, and explain your reasoning.
(A) $\int_{0}^{8} f(x) d x$
(B) $\int_{0}^{3} f(x) d x$
(C) $\int_{3}^{8} f(x) d x$
(D) $\int_{4}^{8} f(x) d x$
(E) $f^{\prime}(1)$

Solution:

$\int_{0}^{3} f(x) d x$ is clearly less than -1 and has the smallest value. The slope of the tangent line of f at $x=1, f^{\prime}(1)$, has a value between -1 and 0 , so it has the next smallest value. The largest value is $\int_{3}^{8} f(x) d x$, followed by $\int_{4}^{8} f(x) d x$, which has a value about 1 unit less than $\int_{3}^{8} f(x) d x$. Still positive, but with a smaller value than $\int_{4}^{8} f(x) d x$, is $\int_{0}^{8} f(x) d x$. Ordering these quantities from smallest to largest gives us

$$
\int_{0}^{3} f(x) d x<f^{\prime}(1)<\int_{0}^{8} f(x) d x<\int_{4}^{8} f(x) d x<\int_{3}^{8} f(x) d x \text { or } \mathrm{B}<\mathrm{E}<\mathrm{A}<\mathrm{D}<\mathrm{C}
$$

68. Use the properties of integrals to verify the inequality without evaluating the integrals.

$$
\frac{\pi}{12} \leq \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin x d x \leq \frac{\sqrt{3} \pi}{12}
$$

Solution:

If $\frac{\pi}{6} \leq x \leq \frac{\pi}{3}$, then $\frac{1}{2} \leq \sin x \leq \frac{\sqrt{3}}{2} \quad\left(\sin x\right.$ is increasing on $\left.\left[\frac{\pi}{6}, \frac{\pi}{3}\right]\right)$, so
$\frac{1}{2}\left(\frac{\pi}{3}-\frac{\pi}{6}\right) \leq \int_{\pi / 6}^{\pi / 3} \sin x d x \leq \frac{\sqrt{3}}{2}\left(\frac{\pi}{3}-\frac{\pi}{6}\right) \quad$ [Property 8]; that is, $\frac{\pi}{12} \leq \int_{\pi / 6}^{\pi / 3} \sin x d x \leq \frac{\sqrt{3} \pi}{12}$.

