
Section 5.2 The Definite Integral

23. Show that the definite integral is equal to lim
n→∞

Rn and then evaluate the limit.

∫ 4

0

(x− x2)dx, Rn =
4

n

n∑
i=1

[
4i

n
− 16i2

n2

]
Solution:
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18.
 2
0
−

2

 with  = 5, 10, 50, and 100.

  

5 1077467 0684794

10 0980007 0783670

50 0901705 0862438

100 0891896 0872262

The value of the integral lies between 0872 and 0892. Note that

() = −
2

is decreasing on (0 2). We cannot make a similar statement

for
 2
−1 

−2  since  is increasing on (−1 0).

19. On [0 1], lim
→∞


=1



1 + 
∆ =

 1

0



1 + 
.

20. On [2 5], lim
→∞


=1



1 + 3 ∆ =

 5
2

√
1 + 3 .

21. On [2 7], lim
→∞


=1

[5(∗ )
3 − 4∗ ]∆ =

 7
2
(53 − 4) .

22. On [1 3], lim
→∞


=1

∗
(∗ )2 + 4

∆ =

 3

1



2 + 4
.

23. For
 4

0

( − 
2) , ∆ =

4− 0


=
4


, and  = 0 + ∆ =

4


. Then

 4

0

(− 
2)  = lim

→∞


=1




4




4


= lim

→∞


=1


4




−

4



2
4


= lim

→∞
4




=1


4


− 162

2


= lim

→∞
.

lim
→∞

4




=1


4


− 162

2


= lim

→∞
4




4




=1

− 16

2


=1

2

= lim

→∞


16

2
(+ 1)

2
− 64

3
(+ 1)(2+ 1)

6



= lim
→∞


8


(+ 1)− 32

32
(+ 1)(2+ 1)



= lim
→∞


8


1 +

1




− 32

3


1 +

1




2 +

1




= 8(1)− 32

3
(1)(2) = −40

3

24. For
 3

1

(3 + 52) ,∆ =
3− 1


=
2


, and  = 1 + ∆ = 1 +

2


. Then

 3

1

(3 + 52) = lim
→∞


=1




1 +

2




2


= lim

→∞


=1


1 +

2



3
+ 5


1 +

2



2
2



= lim
→∞

2




=1


1 +

6


+
122

2
+
83

3


+


5 +

20


+
202

2



= lim
→∞

2




=1


6 +

26


+
322

2
+
83

3


= lim

→∞


[continued]
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57. Write as a single integral in the form
∫ b

a
f(x)dx:∫ 2

−2

f(x)dx+

∫ 5

2

f(x)dx−
∫ −1

−2

f(x)dx

Solution:
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37.
 0

−3


1 +

√
9− 2


 can be interpreted as the area under the graph of

() = 1 +
√

9− 2 between  = −3 and  = 0. This is equal to one-quarter

the area of the circle with radius 3, plus the area of the rectangle, so 0

−3


1 +

√
9− 2


 = 1

4
 · 32 + 1 · 3 = 3 + 9

4
.

38.
 5

−5


−√25− 2


 =

 5

−5
−  5

−5

√
25− 2 . By

symmetry, the value of the first integral is 0 since the shaded

area above the -axis equals the shaded area below the -axis.

The second integral can be interpreted as one half the area of a

circle with radius 5; that is, 1
2
(5)2 = 25

2
. Thus, the value of

the original integral is 0− 25
2
 = − 25

2
.

39.
 3

−4

 1
2

  can be interpreted as the sum of the areas of the two shaded

triangles; that is, 1
2
(4)(2) + 1

2
(3)


3
2


= 4 + 9

4
= 25

4
.

40.
 1

0
|2− 1|  can be interpreted as the sum of the areas of the two shaded

triangles; that is, 2


1
2


1
2


(1) = 1

2
.

41.
 1

1

√
1 + 4  = 0 since the limits of integration are equal.

42.
 0


sin4   = −  

0
sin4   [because we reversed the limits of integration]

= −  
0

sin4   [we can use any letter without changing the value of the integral]

= − 3
8
 [given value]

43.
 1

0
(5− 62)  =

 1

0
5 − 6

 1

0
2  = 5(1− 0)− 6


1
3


= 5− 2 = 3

44.
 3

1
(2 − 1)  = 2

 3

1
 −  3

1
1  = 2(3 − )− 1(3− 1) = 23 − 2− 2

45.
 3

1
+ 2  =

 3

1
 · 2  = 2

 3

1
  = 2(3 − ) = 5 − 3

46.
 2
0

(2 cos− 5)  =
 2
0

2 cos−  2
0

5 = 2
 2
0

cos− 5
 2
0



= 2(1)− 5
(2)2 − 02

2
= 2− 52

8

47.
 2

−2
() +

 5

2
() − −1

−2
()  =

 5

−2
()  +

 −2

−1
()  [by Property 5 and reversing limits]

=
 5

−1
()  [Property 5]
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60. Find

∫ 5

0
f(x)dx if 3 for x < 3

x for x ≥ 3

Solution:
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48.
 4

2
() +

 8

4
()  =

 8

2
() , so

 8

4
()  =

 8

2
() −  4

2
()  = 73− 59 = 14.

49.
 9

0
[2() + 3()]  = 2

 9

0
() + 3

 9

0
()  = 2(37) + 3(16) = 122

50. If () =


3 for   3

 for  ≥ 3
, then

 5

0
()  can be interpreted as the area of the shaded

region, which consists of a 5-by-3 rectangle surmounted by an isosceles right triangle

whose legs have length 2. Thus,
 5

0
()  = 5(3) + 1

2
(2)(2) = 17.

51.
 3

0
()  is clearly less than −1 and has the smallest value. The slope of the tangent line of  at  = 1,  0(1), has a value

between −1 and 0, so it has the next smallest value. The largest value is
 8

3
() , followed by

 8

4
() , which has a

value about 1 unit less than
 8

3
() . Still positive, but with a smaller value than

 8

4
() , is

 8

0
() . Ordering these

quantities from smallest to largest gives us 3

0
()    0(1) 

 8

0
()  

 8

4
()  

 8

3
()  or B  E A D  C

52.  (0) =
 0

2
()  = −  2

0
() , so  (0) is negative, and similarly, so is  (1).  (3) and  (4) are negative since they

represent negatives of areas below the -axis. Since  (2) =
 2

2
()  = 0 is the only non-negative value, choice C is the

largest.

53.  =
 2

−4
[() + 2+ 5]  =

 2

−4
() + 2

 2

−4
+

 2

−4
5  = 1 + 22 + 3

1 = −3 [area below -axis] + 3− 3 = −3

2 = − 1
2
(4)(4) [area of triangle, see figure] + 1

2
(2)(2)

= −8 + 2 = −6

3 = 5[2− (−4)] = 5(6) = 30

Thus,  = −3 + 2(−6) + 30 = 15.

54. Using Integral Comparison Property 8, ≤ () ≤  ⇒ (2− 0) ≤  2

0
()  ≤ (2− 0) ⇒

2 ≤  2

0
()  ≤ 2 .

55. 2 − 4+ 4 = (− 2)2 ≥ 0 on [0 4], so
 4

0
(2 − 4 + 4)  ≥ 0 [Property 6].

56. 2 ≤  on [0 1]  so
√

1 + 2 ≤ √1 +  on [0 1]. Hence,
 1

0

√
1 + 2  ≤  1

0

√
1 +   [Property 7].

57. If −1 ≤  ≤ 1, then 0 ≤ 2 ≤ 1 and 1 ≤ 1 + 2 ≤ 2, so 1 ≤ √1 + 2 ≤ √2 and

1[1− (−1)] ≤  1

−1

√
1 + 2  ≤ √2 [1− (−1)] [Property 8]; that is, 2 ≤  1

−1

√
1 + 2  ≤ 2

√
2.

58. If


6
≤  ≤ 

3
, then

1

2
≤ sin ≤

√
3

2


sin is increasing on



6
 

3


, so

1

2


3
− 

6


≤
 3

6

sin  ≤
√

3

2


3
− 

6


[Property 8]; that is,



12
≤
 3

6

sin  ≤
√

3

12
.
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61. For the function f whose graph is shown, list the following quantities in increasing order, from smallest to largest,

and explain your reasoning.

(A)
∫ 8

0
f(x)dx (B)

∫ 3

0
f(x)dx (C)

∫ 8

3
f(x)dx (D)

∫ 8

4
f(x)dx (E) f ′(1)

396 CHAPTER 5  Integrals

 36.  The graph of t consists of two straight lines and a semi - 
circle. Evaluate each integral by interpreting it in terms of 
areas.

  (a) y2

0
 tsxd dx      (b) y6

2
 tsxd dx      (c) y7

0
 tsxd dx

x

y

0

2

4 7

4

y=©

37–38
(a) Use the form of the definition of the integral given in Theo- 

rem 4 to evaluate the given integral.
(b) Confirm your answer to part (a) graphically by interpreting 

the integral in terms of areas. 

 37. y3

0
 4x dx 38. y4

21
 (2 2 1

2 x) dx

39–40
(a) Find an approximation to the integral using a Riemann sum 

with right endpoints and n − 8.
(b) Draw a diagram like Figure 3 to illustrate the approximation 

in part (a).
(c) Use Theorem 4 to evaluate the integral.
(d) Interpret the integral in part (c) as a difference of areas and 

illustrate with a diagram like Figure 4.

 39. y8

0
 s3 2 2xd dx 40. y4

0
 sx 2 2 3xd dx

41–46 Evaluate the integral by interpreting it in terms of areas.

 41. y5

22
 s10 2 5xd dx 42. y3

21
 s2x 2 1d dx

 43. y3

24
 | 1

2 x | dx 44. y1

0
 | 2x 2 1 | dx

 45. y0

23
 (1 1 s9 2 x 2 ) dx 46. y4

24
 (2x 2 s16 2 x 2

  ) dx

 47. Prove that yb

a
 x dx −

b 2 2 a 2

2
.

 48. Prove that yb

a
 x 2 dx −

b 3 2 a 3

3
.

49–50 Express the integral as a limit of sums. Then evaluate, 
using a computer algebra system to find both the sum and the 
limit.

 49. y�

0
 sin 5x dx 50. y10

2
 x 6 dx

 51. Evaluate y1

1
 s1 1 x 4  dx.

 52.  Given that y�

0
 sin4 x dx − 3

8 �, what is y0

�
 sin4 � d�?

 53.  In Example 5.1.2 we showed that y1
0 x

2 dx − 1
3. Use this fact 

  and the properties of integrals to evaluate y1
0 s5 2 6x 2 d dx.

 54.  Use the properties of integrals and the result of Example 4 to 
evaluate y3

1 s2e x 2 1d dx.

 55.  Use the result of Example 4 to evaluate y3

1
 e x12 dx.

 56.  Use the result of Exercise 47 and the fact that 
y�y2

0
 cos x dx − 1 (from Exercise 5.1.33), together with the 

properties of integrals, to evaluate y�y2

0
 s2 cos x 2 5xd dx.

 57. Write as a single integral in the form yb
a
 f sxd dx :

y2

22 
 f sxd dx 1 y5

2
 f sxd dx 2 y21

22
 f sxd dx

 58. If y8
2  f sxd dx − 7.3 and y4

2  f sxd dx − 5.9, find y8
4  f sxd dx.

 59.  If y 9
0  f sxd dx − 37 and y 9

0  tsxd dx − 16, find 

y9

0
 f2 f sxd 1 3tsxdg dx

 60. Find y5
0 f sxd dx if

f sxd − H3     for x , 3

x     for x > 3

 61.  For the function f  whose graph is shown, list the following 
quantities in increasing order, from smallest to largest, and 
explain your reasoning.

 (A) y8
0 f sxd dx (B) y3

0 f sxd dx (C) y8
3 f sxd dx

 (D) y8
4 f sxd dx (E) f 9s1d

y

0 x

2

5
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Solution:
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61.
 3
0
()  is clearly less than −1 and has the smallest value. The slope of the tangent line of  at  = 1,  0(1), has a value

between −1 and 0, so it has the next smallest value. The largest value is  8
3
() , followed by

 8
4
() , which has a

value about 1 unit less than
 8
3
() . Still positive, but with a smaller value than

 8
4
() , is

 8
0
() . Ordering these

quantities from smallest to largest gives us 3
0
()    0(1) 

 8
0
()  

 8
4
()  

 8
3
()  or B  E A D  C

62.  (0) =
 0
2
()  = −  2

0
() , so  (0) is negative, and similarly, so is  (1).  (3) and  (4) are negative since they

represent negatives of areas below the axis. Since  (2) =
 2
2
()  = 0 is the only nonnegative value, choice C is the

largest.

63.  =
 2
−4[() + 2+ 5]  =

 2
−4 () + 2

 2
−4 +

 2
−4 5  = 1 + 22 + 3

1 = −3 [area below axis] + 3− 3 = −3

2 = − 1
2
(4)(4) [area of triangle, see figure] + 1

2
(2)(2)

= −8 + 2 = −6

3 = 5[2− (−4)] = 5(6) = 30

Thus,  = −3 + 2(−6) + 30 = 15.

64. Using Integral Comparison Property 8, ≤ () ≤  ⇒ (2− 0) ≤  2
0
()  ≤ (2− 0) ⇒

2 ≤  2
0
()  ≤ 2 .

65. 2 − 4+ 4 = (− 2)2 ≥ 0 on [0 4], so  4
0
(2 − 4+ 4)  ≥ 0 [Property 6].

66. 2 ≤  on [0 1]  so
√
1 + 2 ≤ √1 +  on [0 1]. Hence,

 1
0

√
1 + 2  ≤  1

0

√
1 +   [Property 7].

67. If −1 ≤  ≤ 1, then 0 ≤ 2 ≤ 1 and 1 ≤ 1 + 2 ≤ 2, so 1 ≤ √1 + 2 ≤ √2 and
1[1− (−1)] ≤  1−1√1 + 2  ≤ √2 [1− (−1)] [Property 8]; that is, 2 ≤  1−1√1 + 2  ≤ 2√2.

68. If 
6
≤  ≤ 

3
, then 1

2
≤ sin ≤

√
3

2


sin is increasing on



6
 
3


, so

1

2


3
− 

6


≤
 3

6

sin  ≤
√
3

2


3
− 

6


[Property 8]; that is, 

12
≤
 3

6

sin  ≤
√
3

12
.

69. If 0 ≤  ≤ 1, then 0 ≤ 3 ≤ 1, so 0(1− 0) ≤  1
0
3  ≤ 1(1− 0) [Property 8]; that is, 0 ≤  1

0
3  ≤ 1.

70. If 0 ≤  ≤ 3, then 4 ≤ + 4 ≤ 7 and 1
7
≤ 1

+ 4
≤ 1

4
, so 1

7
(3− 0) ≤

 3

0

1

+ 4
 ≤ 1

4
(3− 0) [Property 8]; that is,

3

7
≤
 3

0

1

+ 4
 ≤ 3

4
.

71. If 
4
≤  ≤ 

3
, then 1 ≤ tan ≤ √3, so 1

3
− 

4

 ≤  3
4

tan ≤ √3 
3
− 

4


or 

12
≤  3

4
tan ≤ 

12

√
3.
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68. Use the properties of integrals to verify the inequality without evaluating the integrals.

π

12
≤

∫ π
3

π
6

sinxdx ≤
√
3π

12

Solution:
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48.
 4

2
() +

 8

4
()  =

 8

2
() , so

 8

4
()  =

 8

2
() −  4

2
()  = 73− 59 = 14.

49.
 9

0
[2() + 3()]  = 2

 9

0
() + 3

 9

0
()  = 2(37) + 3(16) = 122

50. If () =


3 for   3

 for  ≥ 3
, then

 5

0
()  can be interpreted as the area of the shaded

region, which consists of a 5-by-3 rectangle surmounted by an isosceles right triangle

whose legs have length 2. Thus,
 5

0
()  = 5(3) + 1

2
(2)(2) = 17.

51.
 3

0
()  is clearly less than −1 and has the smallest value. The slope of the tangent line of  at  = 1,  0(1), has a value

between −1 and 0, so it has the next smallest value. The largest value is
 8

3
() , followed by

 8

4
() , which has a

value about 1 unit less than
 8

3
() . Still positive, but with a smaller value than

 8

4
() , is

 8

0
() . Ordering these

quantities from smallest to largest gives us 3

0
()    0(1) 

 8

0
()  

 8

4
()  

 8

3
()  or B  E A D  C

52.  (0) =
 0

2
()  = −  2

0
() , so  (0) is negative, and similarly, so is  (1).  (3) and  (4) are negative since they

represent negatives of areas below the -axis. Since  (2) =
 2

2
()  = 0 is the only non-negative value, choice C is the

largest.

53.  =
 2

−4
[() + 2+ 5]  =

 2

−4
() + 2

 2

−4
+

 2

−4
5  = 1 + 22 + 3

1 = −3 [area below -axis] + 3− 3 = −3

2 = − 1
2
(4)(4) [area of triangle, see figure] + 1

2
(2)(2)

= −8 + 2 = −6

3 = 5[2− (−4)] = 5(6) = 30

Thus,  = −3 + 2(−6) + 30 = 15.

54. Using Integral Comparison Property 8, ≤ () ≤  ⇒ (2− 0) ≤  2

0
()  ≤ (2− 0) ⇒

2 ≤  2

0
()  ≤ 2 .

55. 2 − 4+ 4 = (− 2)2 ≥ 0 on [0 4], so
 4

0
(2 − 4 + 4)  ≥ 0 [Property 6].

56. 2 ≤  on [0 1]  so
√

1 + 2 ≤ √1 +  on [0 1]. Hence,
 1

0

√
1 + 2  ≤  1

0

√
1 +   [Property 7].

57. If −1 ≤  ≤ 1, then 0 ≤ 2 ≤ 1 and 1 ≤ 1 + 2 ≤ 2, so 1 ≤ √1 + 2 ≤ √2 and

1[1− (−1)] ≤  1

−1

√
1 + 2  ≤ √2 [1− (−1)] [Property 8]; that is, 2 ≤  1

−1

√
1 + 2  ≤ 2

√
2.

58. If


6
≤  ≤ 

3
, then

1

2
≤ sin ≤

√
3

2


sin is increasing on



6
 

3


, so

1

2


3
− 

6


≤
 3

6

sin  ≤
√

3

2


3
− 

6


[Property 8]; that is,



12
≤
 3

6

sin  ≤
√

3

12
.
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