Section 5.1 The Area and Distance Problems

18. Use Definition 2 to find an expression for the area under the graph of f as a limit. Do not evaluate the limit. $f(x)=x+\ln x, 3 \leq x \leq 8$.

Solution:

$$
\begin{aligned}
& f(x)=x+\ln x, 3 \leq x \leq 8 . \quad \Delta x=(8-3) / n=5 / n \text { and } x_{i}=3+i \Delta x=3+5 i / n . \\
& A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}[(3+5 i / n)+\ln (3+5 i / n)] \cdot \frac{5}{n} .
\end{aligned}
$$

22. Determine a region whose area is equal to the given limit. Do not evaluate the limit. $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3}{n} \sqrt{1+\frac{3 i}{n}}$.

Solution:

$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3}{n} \sqrt{1+\frac{3 i}{n}}$ can be interpreted as the area of the region lying under the graph of $y=\sqrt{1+x}$ on the interval $[0,3]$, since for $y=\sqrt{1+x}$ on $[0,3]$ with $\Delta x=\frac{3-0}{n}=\frac{3}{n}, x_{i}=0+i \Delta x=\frac{3 i}{n}$, and $x_{i}^{*}=x_{i}$, the expression for the area is $A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{1+\frac{3 i}{n}} \frac{3}{n}$. Note that this answer is not unique. We could use $y=\sqrt{x}$ on $[1,4]$ or, in general, $y=\sqrt{x-n}$ on $[n+1, n+4]$, where n is any real number.
34. (a) Let A_{n} be the area of a polygon with n equal sides inscribed in a circle with radius r. By dividing the polygon into n congruent triangles with central angle $2 \pi / n$, show that

$$
A_{n}=\frac{1}{2} n r^{2} \sin \frac{2 \pi}{n}
$$

(b) Show that $\lim _{n \rightarrow \infty} A_{n}=\pi r^{2}$. [Hint: Use Equation 3.3.5]

Solution:

(a)

The diagram shows one of the n congruent triangles, $\triangle A O B$, with central angle $2 \pi / n . O$ is the center of the circle and $A B$ is one of the sides of the polygon.
Radius $O C$ is drawn so as to bisect $\angle A O B$. It follows that $O C$ intersects $A B$ at right angles and bisects $A B$. Thus, $\triangle A O B$ is divided into two right triangles with legs of length $\frac{1}{2}(A B)=r \sin (\pi / n)$ and $r \cos (\pi / n) . \triangle A O B$ has area $2 \cdot \frac{1}{2}[r \sin (\pi / n)][r \cos (\pi / n)]=r^{2} \sin (\pi / n) \cos (\pi / n)=\frac{1}{2} r^{2} \sin (2 \pi / n)$, so $A_{n}=n \cdot \operatorname{area}(\triangle A O B)=\frac{1}{2} n r^{2} \sin (2 \pi / n)$.
(b) To use Equation 3.3.2, $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$, we need to have the same expression in the denominator as we have in the argument of the sine function-in this case, $2 \pi / n$.
$\lim _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty} \frac{1}{2} n r^{2} \sin (2 \pi / n)=\lim _{n \rightarrow \infty} \frac{1}{2} n r^{2} \frac{\sin (2 \pi / n)}{2 \pi / n} \cdot \frac{2 \pi}{n}=\lim _{n \rightarrow \infty} \frac{\sin (2 \pi / n)}{2 \pi / n} \pi r^{2}$. Let $\theta=\frac{2 \pi}{n}$.
Then as $n \rightarrow \infty, \theta \rightarrow 0$, so $\lim _{n \rightarrow \infty} \frac{\sin (2 \pi / n)}{2 \pi / n} \pi r^{2}=\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \pi r^{2}=(1) \pi r^{2}=\pi r^{2}$.

