Section 5.1 The Area and Distance Problems

18. Use Definition 2 to find an expression for the area under the graph of f as a limit. Do not evaluate the limit. $f(x) = x + \ln x, 3 \le x \le 8.$

Solution:

$$f(x) = x + \ln x, \ 3 \le x \le 8. \quad \Delta x = (8-3)/n = 5/n \text{ and } x_i = 3 + i \,\Delta x = 3 + 5i/n.$$
$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \sum_{i=1}^n f(x_i) \,\Delta x = \lim_{n \to \infty} \sum_{i=1}^n \left[(3+5i/n) + \ln(3+5i/n) \right] \cdot \frac{5}{n}.$$

22. Determine a region whose area is equal to the given limit. Do not evaluate the limit. $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{3}{n} \sqrt{1 + \frac{3i}{n}}.$

Solution:

 $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{3}{n} \sqrt{1 + \frac{3i}{n}} \text{ can be interpreted as the area of the region lying under the graph of } y = \sqrt{1 + x} \text{ on the interval } [0, 3],$ since for $y = \sqrt{1 + x}$ on [0, 3] with $\Delta x = \frac{3 - 0}{n} = \frac{3}{n}, x_i = 0 + i \Delta x = \frac{3i}{n}$, and $x_i^* = x_i$, the expression for the area is $A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{1 + \frac{3i}{n}} \frac{3}{n}$ Note that this answer is not unique. We could use $y = \sqrt{x}$ on [1, 4] or, in general, $y = \sqrt{x - n}$ on [n + 1, n + 4], where n is any real number.

34. (a) Let A_n be the area of a polygon with n equal sides inscribed in a circle with radius r. By dividing the polygon into n congruent triangles with central angle $2\pi/n$, show that

$$A_n = \frac{1}{2}nr^2\sin\frac{2\pi}{n}$$

(b) Show that $\lim_{n \to \infty} A_n = \pi r^2$. [Hint: Use Equation 3.3.5]

Solution:

The diagram shows one of the *n* congruent triangles, $\triangle AOB$, with central angle $2\pi/n$. *O* is the center of the circle and *AB* is one of the sides of the polygon. Radius *OC* is drawn so as to bisect $\angle AOB$. It follows that *OC* intersects *AB* at right angles and bisects *AB*. Thus, $\triangle AOB$ is divided into two right triangles with legs of length $\frac{1}{2}(AB) = r \sin(\pi/n)$ and $r \cos(\pi/n)$. $\triangle AOB$ has area $2 \cdot \frac{1}{2} [r \sin(\pi/n)] [r \cos(\pi/n)] = r^2 \sin(\pi/n) \cos(\pi/n) = \frac{1}{2}r^2 \sin(2\pi/n)$, so $A_n = n \cdot \operatorname{area}(\triangle AOB) = \frac{1}{2}nr^2 \sin(2\pi/n)$.

(b) To use Equation 3.3.2, $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$, we need to have the same expression in the denominator as we have in the argument of the sine function—in this case, $2\pi/n$.

$$\lim_{n \to \infty} A_n = \lim_{n \to \infty} \frac{1}{2} n r^2 \sin(2\pi/n) = \lim_{n \to \infty} \frac{1}{2} n r^2 \frac{\sin(2\pi/n)}{2\pi/n} \cdot \frac{2\pi}{n} = \lim_{n \to \infty} \frac{\sin(2\pi/n)}{2\pi/n} \pi r^2.$$
 Let $\theta = \frac{2\pi}{n}$.
Then as $n \to \infty, \theta \to 0$, so $\lim_{n \to \infty} \frac{\sin(2\pi/n)}{2\pi/n} \pi r^2 = \lim_{\theta \to 0} \frac{\sin\theta}{\theta} \pi r^2 = (1) \pi r^2 = \pi r^2.$