Section 4.5 Summary of Curve Sketching

11. Use the guidelines of this section to sketch the curve.

$$
y=\frac{x-x^{2}}{2-3 x+x^{2}}
$$

Solution:

$y=f(x)=\frac{x-x^{2}}{2-3 x+x^{2}}=\frac{x(1-x)}{(1-x)(2-x)}=\frac{x}{2-x}$ for $x \neq 1$. There is a hole in the graph at $(1,1)$.
A. $D=\{x \mid x \neq 1,2\}=(-\infty, 1) \cup(1,2) \cup(2, \infty)$
B. x-intercept $=0, y$-intercept $=f(0)=0$
C. No symmetry
D. $\lim _{x \rightarrow \pm \infty} \frac{x}{2-x}=-1$, so $y=-1$ is a HA. $\lim _{x \rightarrow 2^{-}} \frac{x}{2-x}=\infty, \lim _{x \rightarrow 2^{+}} \frac{x}{2-x}=-\infty$, so $x=2$ is a VA.
E. $f^{\prime}(x)=\frac{(2-x)(1)-x(-1)}{(2-x)^{2}}=\frac{2}{(2-x)^{2}}>0[x \neq 1,2]$, so f is increasing on $(-\infty, 1),(1,2)$, and $(2, \infty)$. F. No extrema
G. $f^{\prime}(x)=2(2-x)^{-2} \Rightarrow$
$f^{\prime \prime}(x)=-4(2-x)^{-3}(-1)=\frac{4}{(2-x)^{3}}>0 \quad \Leftrightarrow \quad x<2$, so f is CU on
H.

$(-\infty, 1)$ and $(1,2)$, and f is CD on $(2, \infty)$. No IP
37. Use the guidelines of this section to sketch the curve.

$$
y=\sin x+\sqrt{3} \cos x, \quad-2 \pi \leq x \leq 2 \pi
$$

Solution:

$y=f(x)=\sin x+\sqrt{3} \cos x,-2 \pi \leq x \leq 2 \pi \quad$ A. $D=[-2 \pi, 2 \pi] \quad$ B. y-intercept: $f(0)=\sqrt{3} ; x$-intercepts: $f(x)=0 \Leftrightarrow \sin x=-\sqrt{3} \cos x \Leftrightarrow \tan x=-\sqrt{3} \Leftrightarrow x=-\frac{4 \pi}{3},-\frac{\pi}{3}, \frac{2 \pi}{3}$, or $\frac{5 \pi}{3} \quad$ C. f is periodic with period 2π. D. No asymptote E. $f^{\prime}(x)=\cos x-\sqrt{3} \sin x . \quad f^{\prime}(x)=0 \quad \Leftrightarrow \quad \cos x=\sqrt{3} \sin x \quad \Leftrightarrow \quad \tan x=\frac{1}{\sqrt{3}} \Leftrightarrow$ $x=-\frac{11 \pi}{6},-\frac{5 \pi}{6}, \frac{\pi}{6}$, or $\frac{7 \pi}{6} . \quad f^{\prime}(x)<0 \Leftrightarrow-\frac{11 \pi}{6}<x<-\frac{5 \pi}{6}$ or $\frac{\pi}{6}<x<\frac{7 \pi}{6}$, so f is decreasing on $\left(-\frac{11 \pi}{6},-\frac{5 \pi}{6}\right)$ and $\left(\frac{\pi}{6}, \frac{7 \pi}{6}\right)$, and f is increasing on $\left(-2 \pi,-\frac{11 \pi}{6}\right),\left(-\frac{5 \pi}{6}, \frac{\pi}{6}\right)$, and $\left(\frac{7 \pi}{6}, 2 \pi\right)$. F. Local maximum value $f\left(-\frac{11 \pi}{6}\right)=f\left(\frac{\pi}{6}\right)=\frac{1}{2}+\sqrt{3}\left(\frac{1}{2} \sqrt{3}\right)=2$, local minimum value $f\left(-\frac{5 \pi}{6}\right)=f\left(\frac{7 \pi}{6}\right)=-\frac{1}{2}+\sqrt{3}\left(-\frac{1}{2} \sqrt{3}\right)=-2$
G. $f^{\prime \prime}(x)=-\sin x-\sqrt{3} \cos x . f^{\prime \prime}(x)=0 \Leftrightarrow \sin x=-\sqrt{3} \cos x \Leftrightarrow$ $\tan x=-\frac{1}{\sqrt{3}} \Leftrightarrow x=-\frac{4 \pi}{3},-\frac{\pi}{3}, \frac{2 \pi}{3}$, or $\frac{5 \pi}{3} . \quad f^{\prime \prime}(x)>0 \quad \Leftrightarrow$
$-\frac{4 \pi}{3}<x<-\frac{\pi}{3}$ or $\frac{2 \pi}{3}<x<\frac{5 \pi}{3}$, so f is CU on $\left(-\frac{4 \pi}{3},-\frac{\pi}{3}\right)$ and $\left(\frac{2 \pi}{3}, \frac{5 \pi}{3}\right)$, and f is CD on $\left(-2 \pi,-\frac{4 \pi}{3}\right),\left(-\frac{\pi}{3}, \frac{2 \pi}{3}\right)$, and $\left(\frac{5 \pi}{3}, 2 \pi\right)$. There are IPs at $\left(-\frac{4 \pi}{3}, 0\right)$, $\left(-\frac{\pi}{3}, 0\right),\left(\frac{2 \pi}{3}, 0\right)$, and $\left(\frac{5 \pi}{3}, 0\right)$.

54. Use the guidelines of this section to sketch the curve.

$$
y=\tan ^{-1}\left(\frac{x-1}{x+1}\right)
$$

Solution:

$y=f(x)=\tan ^{-1}\left(\frac{x-1}{x+1}\right)$
A. $D=\{x \mid x \neq-1\} \quad$ B. x-intercept $=1, y$-intercept $=f(0)=\tan ^{-1}(-1)=-\frac{\pi}{4}$
C. No symmetry
D. $\lim _{x \rightarrow \pm \infty} \tan ^{-1}\left(\frac{x-1}{x+1}\right)=\lim _{x \rightarrow \pm \infty} \tan ^{-1}\left(\frac{1-1 / x}{1+1 / x}\right)=\tan ^{-1} 1=\frac{\pi}{4}$, so $y=\frac{\pi}{4}$ is a HA.

Also $\lim _{x \rightarrow-1^{+}} \tan ^{-1}\left(\frac{x-1}{x+1}\right)=-\frac{\pi}{2}$ and $\lim _{x \rightarrow-1^{-}} \tan ^{-1}\left(\frac{x-1}{x+1}\right)=\frac{\pi}{2}$.
E. $f^{\prime}(x)=\frac{1}{1+[(x-1) /(x+1)]^{2}} \frac{(x+1)-(x-1)}{(x+1)^{2}}=\frac{2}{(x+1)^{2}+(x-1)^{2}}=\frac{1}{x^{2}+1}>0$,
so f is increasing on $(-\infty,-1)$ and $(-1, \infty)$.
F. No extreme values
G. $f^{\prime \prime}(x)=-2 x /\left(x^{2}+1\right)^{2}>0 \quad \Leftrightarrow \quad x<0$, so f is CU on $(-\infty,-1)$ and $(-1,0)$, and CD on $(0, \infty)$. IP at $\left(0,-\frac{\pi}{4}\right)$
H.

56. The graph of a function f is shown. (The dashed lines indicate horizontal asymptotes.) Find each of the following for the given function $g(x)=\sqrt[3]{f(x)}$.
(a) The domains of g and g^{\prime}.
(b) The critical numbers of g.
(c) The approximate value of $g^{\prime}(6)$.
(d) All vertical and horizontal asymptotes of g.

Solution:

$$
g(x)=\sqrt[3]{f(x)}
$$

(a) Since the cube-root function is defined for all reals, the domain of g equals the domain of $f,(-\infty, \infty)$.
$g^{\prime}(x)=\frac{1}{3(\sqrt[3]{f(x)})^{2}} \cdot f^{\prime}(x)=\frac{f^{\prime}(x)}{3(\sqrt[3]{f(x)})^{2}}$. Since $f^{\prime}(3)$ does not exist and $f(7)=0, g^{\prime}(3)$ and $g^{\prime}(7)$ do not exist.
The domain of g^{\prime} is $(-\infty, 3) \cup(3,7) \cup(7, \infty)$.
(b) $g^{\prime}(x)=0 \Rightarrow f^{\prime}(x)=0 \Rightarrow x=5$ or $x=9$ [there are horizontal tangent lines there]. From part (a), $g^{\prime}(x)$ does not exist at $x=3$ and $x=7$. So the critical numbers of g are $3,5,7$, and 9 .
(c) From part (a), $g^{\prime}(x)=\frac{f^{\prime}(x)}{3(\sqrt[3]{f(x)})^{2}} \cdot g^{\prime}(6)=\frac{f^{\prime}(6)}{3(\sqrt[3]{f(6)})^{2}} \approx \frac{-2}{3(\sqrt[3]{3})^{2}}=-\frac{2}{3^{5 / 3}} \approx-0.32$.
(d) $\lim _{x \rightarrow-\infty} g(x)=\lim _{x \rightarrow-\infty} \sqrt[3]{f(x)}=\sqrt[3]{2}$ and $\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \sqrt[3]{f(x)}=\sqrt[3]{-1}=-1$, so $y=\sqrt[3]{2}$ and $y=-1$ are horizontal asymptotes. No VA
75. Show that the curve $y=x-\tan ^{-1} x$ has two slant asymptotes: $y=x+\frac{\pi}{2}$ and $y=x-\frac{\pi}{2}$. Use this fact to help sketch the curve.

Solution:

$y=f(x)=x-\tan ^{-1} x, f^{\prime}(x)=1-\frac{1}{1+x^{2}}=\frac{1+x^{2}-1}{1+x^{2}}=\frac{x^{2}}{1+x^{2}}$,
$f^{\prime \prime}(x)=\frac{\left(1+x^{2}\right)(2 x)-x^{2}(2 x)}{\left(1+x^{2}\right)^{2}}=\frac{2 x\left(1+x^{2}-x^{2}\right)}{\left(1+x^{2}\right)^{2}}=\frac{2 x}{\left(1+x^{2}\right)^{2}}$.
$\lim _{x \rightarrow \infty}\left[f(x)-\left(x-\frac{\pi}{2}\right)\right]=\lim _{x \rightarrow \infty}\left(\frac{\pi}{2}-\tan ^{-1} x\right)=\frac{\pi}{2}-\frac{\pi}{2}=0$, so $y=x-\frac{\pi}{2}$ is a SA.
Also, $\lim _{x \rightarrow-\infty}\left[f(x)-\left(x+\frac{\pi}{2}\right)\right]=\lim _{x \rightarrow-\infty}\left(-\frac{\pi}{2}-\tan ^{-1} x\right)=-\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)=0$, so $y=x+\frac{\pi}{2}$ is also a SA. $f^{\prime}(x) \geq 0$ for all x, with equality $\Leftrightarrow x=0$, so f is increasing on \mathbb{R}. $f^{\prime \prime}(x)$ has the same sign as x, so f is CD on $(-\infty, 0)$ and CU on $(0, \infty) . f(-x)=-f(x)$, so f is an odd function; its graph is symmetric about the origin. f has no local extreme values. Its only IP is at $(0,0)$.

