Section 4.2 The Mean Value Theorem

23. Show that the equation has exactly one real solution.

$$
2 x+\cos x=0
$$

Solution:

Let $f(x)=2 x+\cos x$. Then $f(-\pi)=-2 \pi-1<0$ and $f(0)=1>0$. Since f is the sum of the polynomial $2 x$ and the trignometric function $\cos x, f$ is continuous and differentiable for all x. By the Intermediate Value Theorem, there is a number c in $(-\pi, 0)$ such that $f(c)=0$. Thus, the given equation has at least one real root. If the equation has distinct real roots a and b with $a<b$, then $f(a)=f(b)=0$. Since f is continuous on $[a, b]$ and differentiable on (a, b), Rolle's Theorem implies that there is a number r in (a, b) such that $f^{\prime}(r)=0$. But $f^{\prime}(r)=2-\sin r>0$ since $\sin r \leq 1$. This contradiction shows that the given equation can't have two distinct real roots, so it has exactly one root.
28. (a) Suppose that f is differentiable on \mathbb{R} and has two roots. Show that f^{\prime} has at least one root.
(b) Suppose f is twice differentiable on \mathbb{R} and has three roots. Show that $f^{\prime \prime}$ has at least one real root.
(c) Can you generalize parts (a) and (b)?

Solution:

(a) Suppose that $f(a)=f(b)=0$ where $a<b$. By Rolle's Theorem applied to f on $[a, b]$ there is a number c such that $a<c<b$ and $f^{\prime}(c)=0$.
(b) Suppose that $f(a)=f(b)=f(c)=0$ where $a<b<c$. By Rolle's Theorem applied to $f(x)$ on $[a, b]$ and $[b, c]$ there are numbers $a<d<b$ and $b<e<c$ with $f^{\prime}(d)=0$ and $f^{\prime}(e)=0$. By Rolle's Theorem applied to $f^{\prime}(x)$ on $[d, e]$ there is a number g with $d<g<e$ such that $f^{\prime \prime}(g)=0$.
(c) Suppose that f is n times differentiable on \mathbb{R} and has $n+1$ distinct real roots. Then $f^{(n)}$ has at least one real root.
33. Show that $\sin x<x$ if $0<x<2 \pi$.

Solution:

Consider the function $f(x)=\sin x$, which is continuous and differentiable on \mathbb{R}. Let a be a number such that $0<a<2 \pi$.
Then f is continuous on $[0, a]$ and differentiable on $(0, a)$. By the Mean Value Theorem, there is a number c in $(0, a)$ such that $f(a)-f(0)=f^{\prime}(c)(a-0)$; that is, $\sin a-0=(\cos c)(a)$. Now $\cos c<1$ for $0<c<2 \pi$, so $\sin a<1 \cdot a=a$. We took a to be an arbitrary number in $(0,2 \pi)$, so $\sin x<x$ for all x satisfying $0<x<2 \pi$.
35. Use the Mean Value Theorem to prove the inequality

$$
|\sin a-\sin b| \leq|a-b| \quad \text { for all } a \text { and } b
$$

Solution:

Let $f(x)=\sin x$ and let $b<a$. Then $f(x)$ is continuous on $[b, a]$ and differentiable on (b, a). By the Mean Value Theorem, there is a number $c \in(b, a)$ with $\sin a-\sin b=f(a)-f(b)=f^{\prime}(c)(a-b)=(\cos c)(a-b)$. Thus, $|\sin a-\sin b| \leq|\cos c||b-a| \leq|a-b|$. If $a<b$, then $|\sin a-\sin b|=|\sin b-\sin a| \leq|b-a|=|a-b|$. If $a=b$, both sides of the inequality are 0 .
39. Use the method of Example 6 to prove the identity

$$
2 \sin ^{-1} x=\cos ^{-1}\left(1-2 x^{2}\right) \quad x \geq 0
$$

Solution:

Let $f(x)=2 \sin ^{-1} x-\cos ^{-1}\left(1-2 x^{2}\right)$. Then $f^{\prime}(x)=\frac{2}{\sqrt{1-x^{2}}}-\frac{4 x}{\sqrt{1-\left(1-2 x^{2}\right)^{2}}}=\frac{2}{\sqrt{1-x^{2}}}-\frac{4 x}{2 x \sqrt{1-x^{2}}}=0$ [since $x \geq 0$]. Thus, $f^{\prime}(x)=0$ for all $x \in(0,1)$. Thus, $f(x)=C$ on $(0,1)$. To find C, let $x=0.5$. Thus, $2 \sin ^{-1}(0.5)-\cos ^{-1}(0.5)=2\left(\frac{\pi}{6}\right)-\frac{\pi}{3}=0=C$. We conclude that $f(x)=0$ for x in $(0,1)$. By continuity of $f, f(x)=0$ on $[0,1]$. Therefore, we see that $f(x)=2 \sin ^{-1} x-\cos ^{-1}\left(1-2 x^{2}\right)=0 \Rightarrow 2 \sin ^{-1} x=\cos ^{-1}\left(1-2 x^{2}\right)$.
42. Fixed points A number a is called a fixed point of a function f if $f(a)=a$. Prove that if $f^{\prime}(x) \neq 1$ for all real numbers x, then f has at most one fixed point.

Solution:

Assume that f is differentiable (and hence continuous) on \mathbb{R} and that $f^{\prime}(x) \neq 1$ for all x. Suppose f has more than one fixed point. Then there are numbers a and b such that $a<b, f(a)=a$, and $f(b)=b$. Applying the Mean Value Theorem to the function f on $[a, b]$, we find that there is a number c in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$. But then $f^{\prime}(c)=\frac{b-a}{b-a}=1$, contradicting our assumption that $f^{\prime}(x) \neq 1$ for every real number x. This shows that our supposition was wrong, that is, that f cannot have more than one fixed point.

