Section 3.9 Related Rates

22. A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on the dock that is 1 m higher than the bow of the boat. If the rope is pulled in at a rate of $1 \mathrm{~m} / \mathrm{s}$, how fast is the boat approaching the dock when it is 8 m from the dock?

Solution:

Given $\frac{d y}{d t}=-1 \mathrm{~m} / \mathrm{s}$, find $\frac{d x}{d t}$ when $x=8 \mathrm{~m} . y^{2}=x^{2}+1 \Rightarrow 2 y \frac{d y}{d t}=2 x \frac{d x}{d t} \Rightarrow$ $\frac{d x}{d t}=\frac{y}{x} \frac{d y}{d t}=-\frac{y}{x}$. When $x=8, y=\sqrt{65}$, so $\frac{d x}{d t}=-\frac{\sqrt{65}}{8}$. Thus, the boat approaches the dock at $\frac{\sqrt{65}}{8} \approx 1.01 \mathrm{~m} / \mathrm{s}$.
23. Use the fact that the distance(in meters) a dropped stone falls after t seconds is $d=4.9 t^{2}$. A woman stands near the edge of a cliff and drops a stone over the edge. Exactly one second later she drops another stone. One second after that, how fast is the distance between the two stones changing?

Solution:

Let x be the distance (in meters) the first dropped stone has traveled, and let y be the distance (in meters) the stone dropped one second later has traveled. Let t be the time (in seconds) since the woman drops the second stone. Using $d=4.9 t^{2}$, we have $x=4.9(t+1)^{2}$ and $y=4.9 t^{2}$. Let z be the distance between the stones. Then $z=x-y$ and we have $\frac{d z}{d t}=\frac{d x}{d t}-\frac{d y}{d t} \Rightarrow \frac{d z}{d t}=9.8(t+1)-9.8 t=9.8 \mathrm{~m} / \mathrm{s}$.
29. Gravel is being dumped from a conveyor belt at a rate of $30 \mathrm{ft}^{3} / \mathrm{min}$, and its coarseness is such that it forms a pile in the shape of a cone whose base diameter and height are always equal. How fast is the height of the pile increasing when the pile is 10 ft high?

Solution:

We are given that $\frac{d V}{d t}=3 \mathrm{~m}^{3} / \mathrm{min} . V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi\left(\frac{h}{2}\right)^{2} h=\frac{\pi h^{3}}{12} \Rightarrow$
$\frac{d V}{d t}=\frac{d V}{d h} \frac{d h}{d t} \Rightarrow 3=\frac{\pi h^{2}}{4} \frac{d h}{d t} \Rightarrow \frac{d h}{d t}=\frac{12}{\pi h^{2}}$. When $h=3 \mathrm{~m}$,
$\frac{d h}{d t}=\frac{12}{3^{2} \pi}=\frac{4}{3 \pi} \approx 0.42 \mathrm{~m} / \mathrm{min}$.

30. A swimming pool is 5 m wide, 10 m long, 1 m deep at the shallow end, and 3 m deep at its deepest point. A crosssection is shown in the figure. If the pool is being filled at a rate of $0.1 \mathrm{~m}^{3} / \mathrm{min}$, how fast is the water level rising when the depth at the deepest point is 1 m ?

Solution:

The figure is drawn without the top 1 meter.
$V=\frac{1}{2}(b+3) h(5)=\frac{5}{2}(b+3) h$ and, from similar triangles, $\frac{x}{h}=\frac{1.5}{2}=$ $\frac{3}{4}$ and $\frac{y}{h}=\frac{4}{2}=2$, so $b=x+3+y=\frac{3 h}{4}+3+2 h=3+\frac{11 h}{4}$. Thus, $V=\frac{5}{2}\left(6+\frac{11 h}{4}\right) h=15 h+\frac{55}{8} h^{2}$ and so $0.1=\frac{d V}{d t}=\left(15+\frac{55}{4} h\right) \frac{d h}{d t}$.

When $h=1, \frac{d h}{d t}=\frac{0.1}{\left(15+\frac{55}{4}\right)}=\frac{2}{575} \approx 0.00348 \mathrm{~m} / \mathrm{min}$.
44. Two carts, A and B , are connected by a rope 12 m long that passes over a pulley P.(See the figure.) The point Q is on the floor 4 m directly beneath P and between the carts. Cart A is being pulled away from Q at a speed of $0.5 \mathrm{~m} / \mathrm{s}$. How fast is cart B moving toward Q at the instant when cart A is 3 m from Q ?

Solution:

Using Q for the origin, we are given $\frac{d x}{d t}=-0.5 \mathrm{~m} / \mathrm{s}$ and need to find $\frac{d y}{d t}$ when $x=-5$.
Using the Pythagorean Theorem twice, we have $\sqrt{x^{2}+4^{2}}+\sqrt{y^{2}+4^{2}}=12$, the total length of the rope. Differentiating with respect to t, we get
$\frac{x}{\sqrt{x^{2}+4^{2}}} \frac{d x}{d t}+\frac{y}{\sqrt{y^{2}+4^{2}}} \frac{d y}{d t}=0$, so $\frac{d y}{d t}=-\frac{x \sqrt{y^{2}+4^{2}}}{y \sqrt{x^{2}+4^{2}}} \frac{d x}{d t}$.

Now, when $x=-3,12=\sqrt{(-3)^{2}+4^{2}}+\sqrt{y^{2}+4^{2}}=5+\sqrt{y^{2}+4^{2}} \Leftrightarrow \sqrt{y^{2}+4^{2}}=7$, and $y=\sqrt{7^{2}-4^{2}}=\sqrt{33}$.
So when $x=-3, \frac{d y}{d t}=-\frac{(-3)(7)}{\sqrt{33}(5)}(-0.5) \approx-0.37 \mathrm{~m} / \mathrm{s}$.
So cart B is moving towards Q at about $0.37 \mathrm{~m} / \mathrm{s}$.
53. Suppose that the volume V of a rolling snowball increases so that $d V / d t$ is proportional to the surface area of the snowball at time t. Show that the radius r increases at a constant rate, that is, $d r / d t$ is constant.

Solution:

The volume of the snowball is given by $V=\frac{4}{3} \pi r^{3}$, so $\frac{d V}{d t}=\frac{4}{3} \pi \cdot 3 r^{2} \frac{d r}{d t}=4 \pi r^{2} \frac{d r}{d t}$. Since the volume is proportional to the surface area S, with $S=4 \pi r^{2}$, we also have $\frac{d V}{d t}=k \cdot 4 \pi r^{2}$ for some constant k. Equating the two expressions for $\frac{d V}{d t}$ gives $4 \pi r^{2} \frac{d r}{d t}=k \cdot 4 \pi r^{2} \Rightarrow \frac{d r}{d t}=k$, that is, $d r / d t$ is constant.

