Section 3.5 Implicit Differentiation

44. If $x^{2}+x y+y^{3}=1$, find the value of $y^{\prime \prime \prime}$ at the point where $x=1$.

Solution:

If $x=1$ in $x^{2}+x y+y^{3}=1$, then we get $1+y+y^{3}=1 \quad \Rightarrow \quad y^{3}+y=0 \quad \Rightarrow \quad y\left(y^{2}+1\right) \quad \Rightarrow \quad y=0$, so the point where $x=1$ is $(1,0)$. Differentiating implicitly with respect to x gives us $2 x+x y^{\prime}+y \cdot 1+3 y^{2} \cdot y^{\prime}=0$. Substituting 1 for x and 0 for y gives us $2+y^{\prime}+0+0=0 \quad \Rightarrow \quad y^{\prime}=-2$. Differentiating $2 x+x y^{\prime}+y+3 y^{2} y^{\prime}=0$ implicitly with respect to x gives us $2+x y^{\prime \prime}+y^{\prime} \cdot 1+y^{\prime}+3\left(y^{2} y^{\prime \prime}+y^{\prime} \cdot 2 y y^{\prime}\right)=0$. Now substitute 1 for $x, 0$ for y, and -2 for y^{\prime}. $2+y^{\prime \prime}+(-2)+(-2)+3(0+0)=0 \quad \Rightarrow \quad y^{\prime \prime}=2$. Differentiating $2+x y^{\prime \prime}+2 y^{\prime}+3 y^{2} y^{\prime \prime}+6 y\left(y^{\prime}\right)^{2}=0$ implicitly with respect to x gives us $x y^{\prime \prime \prime}+y^{\prime \prime} \cdot 1+2 y^{\prime \prime}+3\left(y^{2} y^{\prime \prime \prime}+y^{\prime \prime} \cdot 2 y y^{\prime}\right)+6\left[y \cdot 2 y^{\prime} y^{\prime \prime}+\left(y^{\prime}\right)^{2} y^{\prime}\right]=0$. Now substitute 1 for x, 0 for $y,-2$ for y^{\prime}, and 2 for $y^{\prime \prime} . y^{\prime \prime \prime}+2+4+3(0+0)+6[0+(-8)]=0 \quad \Rightarrow \quad y^{\prime \prime \prime}=-2-4+48=42$.
48. Show by implicit differentiation that the tangent line to the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

at the point $\left(x_{0}, y_{0}\right)$ has equation

$$
\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=1
$$

Solution:

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \Rightarrow \frac{2 x}{a^{2}}+\frac{2 y y^{\prime}}{b^{2}}=0 \Rightarrow y^{\prime}=-\frac{b^{2} x}{a^{2} y} \Rightarrow$ an equation of the tangent line at $\left(x_{0}, y_{0}\right)$ is $y-y_{0}=\frac{-b^{2} x_{0}}{a^{2} y_{0}}\left(x-x_{0}\right)$. Multiplying both sides by $\frac{y_{0}}{b^{2}}$ gives $\frac{y_{0} y}{b^{2}}-\frac{y_{0}^{2}}{b^{2}}=-\frac{x_{0} x}{a^{2}}+\frac{x_{0}^{2}}{a^{2}}$. Since $\left(x_{0}, y_{0}\right)$ lies on the ellipse, we have $\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=\frac{x_{0}^{2}}{a^{2}}+\frac{y_{0}^{2}}{b^{2}}=1$.
65. Use implicit differentiation to find $d y / d x$ for the equation

$$
\frac{x}{y}=y^{2}+1 \quad y \neq 0
$$

and for the equivalent equation

$$
x=y^{3}+y \quad y \neq 0
$$

Show that although the expressions you get for $d y / d x$ look different, they agree for all points that satisfy the given equation.

Solution:

For $\frac{x}{y}=y^{2}+1, y \neq 0$, we have $\frac{d}{d x}\left(\frac{x}{y}\right)=\frac{d}{d x}\left(y^{2}+1\right) \Rightarrow \frac{y \cdot 1-x \cdot y^{\prime}}{y^{2}}=2 y y^{\prime} \Rightarrow y-x y^{\prime}=2 y^{3} y^{\prime} \Rightarrow$
$2 y^{3} y^{\prime}+x y^{\prime}=y \quad \Rightarrow \quad y^{\prime}\left(2 y^{3}+x\right)=y \quad \Rightarrow \quad y^{\prime}=\frac{y}{2 y^{3}+x}$.
For $x=y^{3}+y, y \neq 0$, we have $\frac{d}{d x}(x)=\frac{d}{d x}\left(y^{3}+y\right) \Rightarrow 1=3 y^{2} y^{\prime}+y^{\prime} \Rightarrow 1=y^{\prime}\left(3 y^{2}+1\right) \Rightarrow$
$y^{\prime}=\frac{1}{3 y^{2}+1}$.
From part (a), $y^{\prime}=\frac{y}{2 y^{3}+x}$. Since $y \neq 0$, we substitute $y^{3}+y$ for x to get
$\frac{y}{2 y^{3}+x}=\frac{y}{2 y^{3}+\left(y^{3}+y\right)}=\frac{y}{3 y^{3}+y}=\frac{y}{y\left(3 y^{2}+1\right)}=\frac{1}{3 y^{2}+1}$, which agrees with part (b).
66. The Bessel function of order $0, y=J(x)$, satisfies the differential equation $x y^{\prime \prime}+y^{\prime}+x y=0$ for all values of x and its value at 0 is $J(0)=1$.
(a) Find $J^{\prime}(0)$.
(b) Use implicit differentiation to find $J^{\prime \prime}(0)$.

Solution:

(a) $y=J(x)$ and $x y^{\prime \prime}+y^{\prime}+x y=0 \quad \Rightarrow \quad x J^{\prime \prime}(x)+J^{\prime}(x)+x J(x)=0$. If $x=0$, we have $0+J^{\prime}(0)+0=0$, so $J^{\prime}(0)=0$.
(b) Differentiating $x y^{\prime \prime}+y^{\prime}+x y=0$ implicitly, we get $x y^{\prime \prime \prime}+y^{\prime \prime} \cdot 1+y^{\prime \prime}+x y^{\prime}+y \cdot 1=0 \Rightarrow$ $x y^{\prime \prime \prime}+2 y^{\prime \prime}+x y^{\prime}+y=0$, so $x J^{\prime \prime \prime}(x)+2 J^{\prime \prime}(x)+x J^{\prime}(x)+J(x)=0$. If $x=0$, we have $0+2 J^{\prime \prime}(0)+0+1 \quad[J(0)=1$ is given $]=0 \quad \Rightarrow \quad 2 J^{\prime \prime}(0)=-1 \quad \Rightarrow \quad J^{\prime \prime}(0)=-\frac{1}{2}$.
67. The figure shows a lamp located three units to the right of the y-axis and a shadow created by the elliptical region $x^{2}+4 y^{2} \leq 5$. If the point $(-5,0)$ is on the edge of the shadow, how far above the x-axis is the lamp located?

Solution:

$x^{2}+4 y^{2}=5 \Rightarrow 2 x+4\left(2 y y^{\prime}\right)=0 \Rightarrow y^{\prime}=-\frac{x}{4 y}$. Now let h be the height of the lamp, and let (a, b) be the point of tangency of the line passing through the points $(3, h)$ and $(-5,0)$. This line has slope $(h-0) /[3-(-5)]=\frac{1}{8} h$. But the slope of the tangent line through the point (a, b) can be expressed as $y^{\prime}=-\frac{a}{4 b}$, or as $\frac{b-0}{a-(-5)}=\frac{b}{a+5}$ [since the line passes through $(-5,0)$ and $(a, b)]$, so $-\frac{a}{4 b}=\frac{b}{a+5} \Leftrightarrow 4 b^{2}=-a^{2}-5 a \quad \Leftrightarrow \quad a^{2}+4 b^{2}=-5 a$. But $a^{2}+4 b^{2}=5$ [since (a, b) is on the ellipse], so $5=-5 a \Leftrightarrow a=-1$. Then $4 b^{2}=-a^{2}-5 a=-1-5(-1)=4 \Rightarrow b=1$, since the point is on the top half of the ellipse. So $\frac{h}{8}=\frac{b}{a+5}=\frac{1}{-1+5}=\frac{1}{4} \Rightarrow h=2$. So the lamp is located 2 units above the x-axis.

