Section 3.2 The Product and Quotient Rules

44. If $g(x)=\frac{x}{e^{x}}$, find $g^{(n)}(x)$.

Solution:

$g(x)=\frac{x}{e^{x}} \Rightarrow g^{\prime}(x)=\frac{e^{x} \cdot 1-x \cdot e^{x}}{\left(e^{x}\right)^{2}}=\frac{e^{x}(1-x)}{\left(e^{x}\right)^{2}}=\frac{1-x}{e^{x}} \Rightarrow$
$g^{\prime \prime}(x)=\frac{e^{x} \cdot(-1)-(1-x) e^{x}}{\left(e^{x}\right)^{2}}=\frac{e^{x}[-1-(1-x)]}{\left(e^{x}\right)^{2}}=\frac{x-2}{e^{x}} \Rightarrow$
$g^{\prime \prime \prime}(x)=\frac{e^{x} \cdot 1-(x-2) e^{x}}{\left(e^{x}\right)^{2}}=\frac{e^{x}[1-(x-2)]}{\left(e^{x}\right)^{2}}=\frac{3-x}{e^{x}} \Rightarrow$
$g^{(4)}(x)=\frac{e^{x} \cdot(-1)-(3-x) e^{x}}{\left(e^{x}\right)^{2}}=\frac{e^{x}[-1-(3-x)]}{\left(e^{x}\right)^{2}}=\frac{x-4}{e^{x}}$.
The pattern suggests that $g^{(n)}(x)=\frac{(x-n)(-1)^{n}}{e^{x}}$. (We could use mathematical induction to prove this formula.)
50. If $f(2)=10$ and $f^{\prime}(x)=x^{2} f(x)$ for all x, find $f^{\prime \prime}(2)$.

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=x^{2} f(x) \Rightarrow f^{\prime \prime}(x)=x^{2} f^{\prime}(x)+f(x) \cdot 2 x . \quad \text { Now } f^{\prime}(2)=2^{2} f(2)=4(10)=40, \text { so } \\
& f^{\prime \prime}(2)=2^{2}(40)+10(4)=200 .
\end{aligned}
$$

54. If f is a differentiable function, find an expression for the derivative of each of the following functions.
(a) $y=x^{2} f(x)$
(b) $y=\frac{f(x)}{x^{2}}$
(c) $y=\frac{x^{2}}{f(x)}$
(d) $y=\frac{1+x f(x)}{\sqrt{x}}$

Solution:

(a) $y=x^{2} f(x) \quad \Rightarrow \quad y^{\prime}=x^{2} f^{\prime}(x)+f(x)(2 x)$
(b) $y=\frac{f(x)}{x^{2}} \Rightarrow y^{\prime}=\frac{x^{2} f^{\prime}(x)-f(x)(2 x)}{\left(x^{2}\right)^{2}}=\frac{x f^{\prime}(x)-2 f(x)}{x^{3}}$
(c) $y=\frac{x^{2}}{f(x)} \Rightarrow y^{\prime}=\frac{f(x)(2 x)-x^{2} f^{\prime}(x)}{[f(x)]^{2}}$
(d) $y=\frac{1+x f(x)}{\sqrt{x}} \Rightarrow$

$$
\begin{aligned}
y^{\prime} & =\frac{\sqrt{x}\left[x f^{\prime}(x)+f(x)\right]-[1+x f(x)] \frac{1}{2 \sqrt{x}}}{(\sqrt{x})^{2}} \\
& =\frac{x^{3 / 2} f^{\prime}(x)+x^{1 / 2} f(x)-\frac{1}{2} x^{-1 / 2}-\frac{1}{2} x^{1 / 2} f(x)}{x} \cdot \frac{2 x^{1 / 2}}{2 x^{1 / 2}}=\frac{x f(x)+2 x^{2} f^{\prime}(x)-1}{2 x^{3 / 2}}
\end{aligned}
$$

58. Use the method of Hint to compute $Q^{\prime}(0)$, where

$$
Q(x)=\frac{1+x+x^{2}+x e^{x}}{1-x+x^{2}-x e^{x}}
$$

Hint: Instead of finding $Q^{\prime}(x)$ first, let $f(x)$ be the numerator and $g(x)$ the denominator of $Q(x)$ and compute $Q^{\prime}(x)$ from $f(0), f^{\prime}(0), g(0)$, and $g^{\prime}(0)$.

Solution:

$Q=\frac{f}{g} \quad \Rightarrow \quad Q^{\prime}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$. For $f(x)=1+x+x^{2}+x e^{x}, f^{\prime}(x)=1+2 x+x e^{x}+e^{x}$, and for $g(x)=1-x+x^{2}-x e^{x}, g^{\prime}(x)=-1+2 x-x e^{x}-e^{x}$.
Thus, $Q^{\prime}(0)=\frac{g(0) f^{\prime}(0)-f(0) g^{\prime}(0)}{[g(0)]^{2}}=\frac{1 \cdot 2-1 \cdot(-2)}{1^{2}}=\frac{4}{1}=4$.

