Section 2.7 Derivatives and Rates of Change

34. If the tangent line to $y=f(x)$ at $(4,3)$ passes through the point $(0,2)$, find $f(4)$ and $f^{\prime}(4)$.

Solution:

Since $(4,3)$ is on $y=f(x), f(4)=3$. The slope of the tangent line between $(0,2)$ and $(4,3)$ is $\frac{1}{4}$, so $f^{\prime}(4)=\frac{1}{4}$.
36. A particle moves along a straight line with equation of motion $s=f(t)$, where s is measured in meters and t in seconds. Find the velocity and the speed when $t=4$.

$$
f(t)=10+\frac{45}{t+1}
$$

Solution:

$$
\begin{aligned}
v(4)=f^{\prime}(4) & =\lim _{h \rightarrow 0} \frac{f(4+h)-f(4)}{h}=\lim _{h \rightarrow 0} \frac{\left(10+\frac{45}{4+h+1}\right)-\left(10+\frac{45}{4+1}\right)}{h}=\lim _{h \rightarrow 0} \frac{\frac{45}{5+h}-9}{h} \\
& =\lim _{h \rightarrow 0} \frac{45-9(5+h)}{h(5+h)}=\lim _{h \rightarrow 0} \frac{-9 h}{h(5+h)}=\lim _{h \rightarrow 0} \frac{-9}{5+h}=-\frac{9}{5} \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

The speed when $t=4$ is $\left|-\frac{9}{5}\right|=\frac{9}{5} \mathrm{~m} / \mathrm{s}$.
58. Determine whether $f^{\prime}(0)$ exists.

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Solution:

Since $f(x)=x^{2} \sin (1 / x)$ when $x \neq 0$ and $f(0)=0$, we have
$f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h^{2} \sin (1 / h)-0}{h}=\lim _{h \rightarrow 0} h \sin (1 / h)$. Since $-1 \leq \sin \frac{1}{h} \leq 1$, we have
$-|h| \leq|h| \sin \frac{1}{h} \leq|h| \Rightarrow-|h| \leq h \sin \frac{1}{h} \leq|h|$. Because $\lim _{h \rightarrow 0}(-|h|)=0$ and $\lim _{h \rightarrow 0}|h|=0$, we know that $\lim _{h \rightarrow 0}\left(h \sin \frac{1}{h}\right)=0$ by the Squeeze Theorem. Thus, $f^{\prime}(0)=0$.

