Section 2.6 Limits at Infinity; Horizontal Asymptotes

30. Find the limit or show that it does not exist.

$$
\lim _{x \rightarrow-\infty}\left(\sqrt{4 x^{2}+3 x}+2 x\right)
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow-\infty}\left(\sqrt{4 x^{2}+3 x}+2 x\right) & =\lim _{x \rightarrow-\infty}\left(\sqrt{4 x^{2}+3 x}+2 x\right)\left[\frac{\sqrt{4 x^{2}+3 x}-2 x}{\sqrt{4 x^{2}+3 x}-2 x}\right] \\
& =\lim _{x \rightarrow-\infty} \frac{\left(4 x^{2}+3 x\right)-(2 x)^{2}}{\sqrt{4 x^{2}+3 x}-2 x}=\lim _{x \rightarrow-\infty} \frac{3 x}{\sqrt{4 x^{2}+3 x}-2 x} \\
& =\lim _{x \rightarrow-\infty} \frac{3 x / x}{\left(\sqrt{4 x^{2}+3 x}-2 x\right) / x}=\lim _{x \rightarrow-\infty} \frac{3}{-\sqrt{4+3 / x}-2} \quad\left[\text { since } x=-\sqrt{x^{2}} \text { for } x<0\right] \\
& =\frac{3}{-\sqrt{4+0}-2}=-\frac{3}{4}
\end{aligned}
$$

48. Find the horizontal and vertical asymptotes of each curve. If you have a graphing device, check your work by graphing the curve and estimating the asymptotes.

$$
y=\frac{2 x^{2}+1}{3 x^{2}+2 x-1}
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow \pm \infty} \frac{2 x^{2}+1}{3 x^{2}+2 x-1} & =\lim _{x \rightarrow \pm \infty} \frac{\left(2 x^{2}+1\right) / x^{2}}{\left(3 x^{2}+2 x-1\right) / x^{2}} \\
& =\lim _{x \rightarrow \pm \infty} \frac{2+1 / x^{2}}{3+2 / x-1 / x^{2}}=\frac{2}{3}
\end{aligned}
$$

so $y=\frac{2}{3}$ is a horizontal asymptote. $y=f(x)=\frac{2 x^{2}+1}{3 x^{2}+2 x-1}=\frac{2 x^{2}+1}{(3 x-1)(x+1)}$.

The denominator is zero when $x=\frac{1}{3}$ and -1 , but the numerator is nonzero, so $x=\frac{1}{3}$ and $x=-1$ are vertical asymptotes. The graph confirms our work.
58. Find a formula for a function that has vertical asymptotes $x=1$ and $x=3$ and horizontal asymptote $y=1$.

Solution:

Since the function has vertical asymptotes $x=1$ and $x=3$, the denominator of the rational function we are looking for must have factors $(x-1)$ and $(x-3)$. Because the horizontal asymptote is $y=1$, the degree of the numerator must equal the degree of the denominator, and the ratio of the leading coefficients must be 1 . One possibility is $f(x)=\frac{x^{2}}{(x-1)(x-3)}$.

