Section 2.5 Continuity

30. Explain, using Theorems 4, 5, 7, and 9, why the function is continuous at every number in its domain. State the domain.

$$
B(u)=\sqrt{3 u-2}+\sqrt[3]{2 u-3}
$$

Solution:

 $B(u)=\sqrt{3 u-2}+\sqrt[3]{2 u-3}$ is defined when $3 u-2 \geq 0 \Rightarrow 3 u \geq 2 \Rightarrow u \geq \frac{2}{3}$. (Note that $\sqrt[3]{2 u-3}$ is defined everywhere.) So B has domain $\left[\frac{2}{3}, \infty\right)$. By Theorems 7 and $9, \sqrt{3 u-2}$ and $\sqrt[3]{2 u-3}$ are each continuous on their domain because each is the composite of a root function and a polynomial function. B is the sum of these two functions, so it is continuous at every number in its domain by part 1 of Theorem 4.44. Find the numbers at which f is discontinuous. At which of these numbers is f continuous from the right, from the left, or neither? Sketch the graph of f.

$$
f(x)= \begin{cases}2^{x} & \text { if } x \leq 1 \\ 3-x & \text { if } 1<x \leq 4 \\ \sqrt{x} & \text { if } x>4\end{cases}
$$

Solution:

$f(x)= \begin{cases}2^{x} & \text { if } x \leq 1 \\ 3-x & \text { if } 1<x \leq 4 \\ \sqrt{x} & \text { if } x>4\end{cases}$
f is continuous on $(-\infty, 1),(1,4)$, and $(4, \infty)$, where it is an exponential, a polynomial, and a root function, respectively.

Now $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 2^{x}=2$ and $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(3-x)=2$. Since $f(1)=2$ we have continuity at 1 . Also,
$\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{-}}(3-x)=-1=f(4)$ and $\lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{+}} \sqrt{x}=2$, so f is discontinuous at 4 , but it is continuous from the left at 4 .
48. Find the values of a and b that make f continuous everywhere.

$$
f(x)= \begin{cases}\frac{x^{2}-4}{x-2} & \text { if } x<2 \\ a x^{2}-b x+3 & \text { if } 2 \leq x<3 \\ 2 x-a+b & \text { if } x \geq 3\end{cases}
$$

Solution:

$$
\begin{aligned}
& f(x)= \begin{cases}\frac{x^{2}-4}{x-2} & \text { if } x<2 \\
a x^{2}-b x+3 & \text { if } 2 \leq x<3 \\
2 x-a+b & \text { if } x \geq 3\end{cases} \\
& \text { At } x=2: \quad \begin{array}{l}
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2^{-}} \frac{(x+2)(x-2)}{x-2}=\lim _{x \rightarrow 2^{-}}(x+2)=2+2=4 \\
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(a x^{2}-b x+3\right)=4 a-2 b+3
\end{array}
\end{aligned}
$$

$$
\text { We must have } 4 a-2 b+3=4 \text {, or } \mathbf{4 a}-\mathbf{2 b}=\mathbf{1}
$$

$$
\text { At } x=3: \quad \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}\left(a x^{2}-b x+3\right)=9 a-3 b+3
$$

$$
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(2 x-a+b)=6-a+b
$$

$$
\begin{equation*}
\text { We must have } 9 a-3 b+3=6-a+b \text {, or } \mathbf{1 0} \boldsymbol{a}-\mathbf{4} \boldsymbol{b}=\mathbf{3} \tag{2}
\end{equation*}
$$

Now solve the system of equations by adding -2 times equation (1) to equation (2).

$$
\begin{aligned}
-8 a+4 b & =-2 \\
10 a-4 b & =3 \\
\hline 2 a & =1
\end{aligned}
$$

So $a=\frac{1}{2}$. Substituting $\frac{1}{2}$ for a in (1) gives us $-2 b=-1$, so $b=\frac{1}{2}$ as well. Thus, for f to be continuous on $(-\infty, \infty)$, $a=b=\frac{1}{2}$.
58. Use the Intermediate Value Theorem to show that there is a solution of the given equation in the specified interval.

$$
\sin x=x^{2}-x, \quad(1,2)
$$

Solution:

The equation $\sin x=x^{2}-x$ is equivalent to the equation $\sin x-x^{2}+x=0 . f(x)=\sin x-x^{2}+x$ is continuous on the interval $[1,2], f(1)=\sin 1 \approx 0.84$, and $f(2)=\sin 2-2 \approx-1.09$. Since $\sin 1>0>\sin 2-2$, there is a number c in $(1,2)$ such that $f(c)=0$ by the Intermediate Value Theorem. Thus, there is a root of the equation $\sin x-x^{2}+x=0$, or $\sin x=x^{2}-x$, in the interval $(1,2)$.
74. If a and b are positive numbers, prove that the equation

$$
\frac{a}{x^{3}+2 x^{2}-1}+\frac{b}{x^{3}+x-2}=0
$$

has at least one solution in the interval $(-1,1)$.

Solution:

$\frac{a}{x^{3}+2 x^{2}-1}+\frac{b}{x^{3}+x-2}=0 \Rightarrow a\left(x^{3}+x-2\right)+b\left(x^{3}+2 x^{2}-1\right)=0$. Let $p(x)$ denote the left side of the last equation. Since p is continuous on $[-1,1], p(-1)=-4 a<0$, and $p(1)=2 b>0$, there exists a c in $(-1,1)$ such that $p(c)=0$ by the Intermediate Value Theorem. Note that the only solution of either denominator that is in $(-1,1)$ is $(-1+\sqrt{5}) / 2=r$, but $p(r)=(3 \sqrt{5}-9) a / 2 \neq 0$. Thus, c is not a solution of either denominator, so $p(c)=0 \Rightarrow$ $x=c$ is a solution of the given equation.

