Section 2.2 The Limit of a Function

4. Use the given graph of f to state the value of each quantity, if it exists. If it does not exist, explain why.
(a) $\lim _{x \rightarrow 2^{-}} f(x)$
(b) $\lim _{x \rightarrow 2^{+}} f(x)$
(c) $\lim _{x \rightarrow 2} f(x)$
(d) $f(2)$
(e) $\lim _{x \rightarrow 4} f(x)$
(f) $f(4)$

Solution:

(a) As x approaches 2 from the left, the values of $f(x)$ approach 3 , so $\lim _{x \rightarrow 2^{-}} f(x)=3$.
(b) As x approaches 2 from the right, the values of $f(x)$ approach 1 , so $\lim _{x \rightarrow 2^{+}} f(x)=1$.
(c) $\lim _{x \rightarrow 2} f(x)$ does not exist since the left-hand limit does not equal the right-hand limit.
(d) When $x=2, y=3$, so $f(2)=3$.
(e) As x approaches 4 , the values of $f(x)$ approach 4 , so $\lim _{x \rightarrow 4} f(x)=4$.
(f) There is no value of $f(x)$ when $x=4$, so $f(4)$ does not exist.
10. A patient receives a $150-\mathrm{mg}$ injection of a drug every 4 hours. The graph shows the amount $f(t)$ of the drug in the bloodstream after t hours. Find $\lim _{t \rightarrow 12^{-}} f(t)$ and $\lim _{t \rightarrow 12^{+}} f(t)$ and explain the significance of these one-sided limits.

Solution:

$\lim _{t \rightarrow 12^{-}} f(t)=150 \mathrm{mg}$ and $\lim _{t \rightarrow 12^{+}} f(t)=300 \mathrm{mg}$. These limits show that there is an abrupt change in the amount of drug in the patient's bloodstream at $t=12 \mathrm{~h}$. The left-hand limit represents the amount of the drug just before the fourth injection. The right-hand limit represents the amount of the drug just after the fourth injection.
16. Sketch the graph of an example of a function f that satisfies all of the given conditions.

$$
\lim _{x \rightarrow 0} f(x)=4, \quad \lim _{x \rightarrow 8^{-}} f(x)=1, \quad \lim _{x \rightarrow 8^{+}} f(x)=-3, f(0)=6, f(8)=-1
$$

Solution:

$\lim _{x \rightarrow 0} f(x)=4, \lim _{x \rightarrow 8^{-}} f(x)=1, \lim _{x \rightarrow 8^{+}} f(x)=-3$,
$f(0)=6, f(8)=-1$

38. Determine the infinite limit. $\lim _{x \rightarrow 3^{-}} \frac{x^{2}+4 x}{x^{2}-2 x-3}$

Solution:

$\lim _{x \rightarrow 3^{-}} \frac{x^{2}+4 x}{x^{2}-2 x-3}=\lim _{x \rightarrow 3^{-}} \frac{x^{2}+4 x}{(x-3)(x+1)}=-\infty$ since the numerator is positive and the denominator approaches 0 through negative values as $x \rightarrow 3^{-}$.
42. (a) Find the vertical asymptotes of the function $y=\frac{x^{2}+1}{3 x-2 x^{2}}$
(b) Confirm your answer to part (a) by graphing the function.

Solution:

(a) The denominator of $y=\frac{x^{2}+1}{3 x-2 x^{2}}=\frac{x^{2}+1}{x(3-2 x)}$ is equal to zero when
(b) $x=0$ and $x=\frac{3}{2}$ (and the numerator is not), so $x=0$ and $x=1.5$ are vertical asymptotes of the function.

