Section 2.2 The Limit of a Function

4. Use the given graph of f to state the value of each quantity, if it exists. If it does not exist, explain why.

(a)
$$\lim_{x \to 2^{-}} f(x)$$
 (b) $\lim_{x \to 2^{+}} f(x)$ (c) $\lim_{x \to 2} f(x)$ (d) $f(2)$ (e) $\lim_{x \to 4} f(x)$ (f) $f(4)$

Solution:

- (a) As x approaches 2 from the left, the values of f(x) approach 3, so $\lim_{x \to -\infty} f(x) = 3$.
- (b) As x approaches 2 from the right, the values of f(x) approach 1, so $\lim_{x \to 2^+} f(x) = 1$.
- (c) $\lim_{x\to 2} f(x)$ does not exist since the left-hand limit does not equal the right-hand limit.
- (d) When x = 2, y = 3, so f(2) = 3.
- (e) As x approaches 4, the values of f(x) approach 4, so $\lim_{x \to 4} f(x) = 4$.
- (f) There is no value of f(x) when x = 4, so f(4) does not exist.
- 10. A patient receives a 150-mg injection of a drug every 4 hours. The graph shows the amount f(t) of the drug in the bloodstream after t hours. Find $\lim_{t\to 12^-} f(t)$ and $\lim_{t\to 12^+} f(t)$ and explain the significance of these one-sided limits.

Solution:

 $\lim_{t \to 12^{-}} f(t) = 150 \text{ mg and } \lim_{t \to 12^{+}} f(t) = 300 \text{ mg.}$ These limits show that there is an abrupt change in the amount of drug in the patient's bloodstream at t = 12 h. The left-hand limit represents the amount of the drug just before the fourth injection. The right-hand limit represents the amount of the drug just after the fourth injection.

16. Sketch the graph of an example of a function f that satisfies all of the given conditions.

$$\lim_{x \to 0} f(x) = 4, \ \lim_{x \to 8^{-}} f(x) = 1, \ \lim_{x \to 8^{+}} f(x) = -3, \ f(0) = 6, \ f(8) = -1$$

Solution:

38. Determine the infinite limit. $\lim_{x \to 3^-} \frac{x^2 + 4x}{x^2 - 2x - 3}$

Solution:

 $\lim_{x \to 3^{-}} \frac{x^2 + 4x}{x^2 - 2x - 3} = \lim_{x \to 3^{-}} \frac{x^2 + 4x}{(x - 3)(x + 1)} = -\infty$ since the numerator is positive and the denominator approaches 0

through negative values as $x \to 3^-$.

42. (a) Find the vertical asymptotes of the function $y = \frac{x^2+1}{3x-2x^2}$

(b) Confirm your answer to part (a) by graphing the function.

Solution:

(a) The denominator of $y = \frac{x^2 + 1}{3x - 2x^2} = \frac{x^2 + 1}{x(3 - 2x)}$ is equal to zero when

x = 0 and $x = \frac{3}{2}$ (and the numerator is not), so x = 0 and x = 1.5 are vertical asymptotes of the function.

