
Section 2.2 The Limit of a Function

4. Use the given graph of f to state the value of each quantity, if it exists. If it does not exist, explain why.

(a) lim
x→2−

f(x) (b) lim
x→2+

f(x) (c) lim
x→2

f(x) (d) f(2) (e) lim
x→4

f(x) (f) f(4)
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   1�. Explain in your own words what is meant by the equation

lim
x l 2

 f sxd − 5

   Is it possible for this statement to be true and yet f s2d − 3? 
Explain.

  2�. Explain what it means to say that

lim
x l 12

f sxd − 3    and     lim
x l11

 f sxd − 7

   In this situation is it possible that limx l 1 f sxd exists?  
Explain.

  3�.  Explain the meaning of each of the following.

 (a) lim
x l

 

23
f sxd − ` (b) lim

x l 41
f sxd − 2`

 4.  Use the given graph of f  to state the value of each quantity,  
 if it exists. If it does not exist, explain why.

 (a) lim
x l

 

22
f sxd (b) lim

x l 21
f sxd (c) lim

x l 2
 f sxd

 (d) f s2d (e) lim
x l 4

 f sxd (f ) f s4d

y

0 x2 4

4

2

 5.  For the function f  whose graph is given, state the value of 
each quantity, if it exists. If it does not exist, explain why.

 (a) lim
x l 1

 f sxd (b) lim
x l 32

f sxd (c) lim
x l 31

f sxd

 (d) lim
x l 3

 f sxd (e) f s3d

y

0 x2 4

4

2

 6.  For the function h whose graph is given, state the value of 
each quantity, if it exists. If it does not exist, explain why.

 (a) lim
x l 232

hsxd (b) lim
x l 231

hsxd (c) lim
x l 23

hsxd

 (d) hs23d (e) lim
xl

 

02 
hsxd (f ) lim

x l
 

01 
hsxd

 (g) lim
x l 0

 hsxd (h) hs0d (i) lim
x l 2

 hsxd

 ( j) hs2d (k) lim
x l

 

51
hsxd (l) lim

x l
 

52 
hsxd

y

0 x2_2_4 4 6

  7.  For the function t whose graph is given, state the value of 
each quantity, if it exists. If it does not exist, explain why.

 (a) lim
t l 02

tstd (b) lim
t l 01

tstd (c) lim
t l 0

tstd

 (d) lim
t l 22

tstd (e) lim
t l 21

tstd (f ) lim
t l 2

tstd

 (g) ts2d (h) lim
t l 4

 tstd

y

t2 4

4

2

 8.  For the function A whose graph is shown, state the following.

 (a)  lim 
x l23

 Asxd (b) lim
x l22

 Asxd 

 (c) lim
x l21

 Asxd (d)  lim 
x l21

 Asxd

 (e) The equations of the vertical asymptotes

0

y

x2_3 5

 9.  For the function f  whose graph is shown, state the following.

 (a) lim 
x l27

 f sxd (b) lim 
x l23 

 f sxd (c) lim
x l 0 

 f sxd

 (d) lim
x l 62

f sxd (e) lim
x l 61

f sxd
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Solution:

70 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

2.2 The Limit of a Function

1. As  approaches 2, () approaches 5. [Or, the values of () can be made as close to 5 as we like by taking  sufficiently

close to 2 (but  6= 2).] Yes, the graph could have a hole at (2 5) and be defined such that (2) = 3.

2. As  approaches 2 from the left, () approaches 1; and as  approaches 2 from the right, () approaches 5. No, the limit

does not exist because the left- and right-hand limits are different.

3. (a) lim→−5 () =∞ means that the values of () can be made arbitrarily large (as large as we please) by taking 

sufficiently close to −5 (but not equal to −5).

(b) lim→3+ () = −∞ means that the values of () can be made arbitrarily large negative by taking  sufficiently close

to 3 through values larger than 3.

4. (a) As  approaches 2 from the left, the values of () approach 3, so lim
→2−

() = 3.

(b) As  approaches 2 from the right, the values of () approach 1, so lim
→2+

() = 1.

(c) lim
→2

() does not exist since the left-hand limit does not equal the right-hand limit.

(d) When  = 2,  = 3, so (2) = 3.

(e) As  approaches 4, the values of () approach 4, so lim
→4

() = 4.

(f ) There is no value of () when  = 4, so (4) does not exist.

5. (a) As  approaches 1, the values of () approach 2, so lim
→1

() = 2.

(b) As  approaches 3 from the left, the values of () approach 1, so lim
→3−

() = 1.

(c) As  approaches 3 from the right, the values of () approach 4, so lim
→3+

() = 4.

(d) lim
→3

() does not exist since the left-hand limit does not equal the right-hand limit.

(e) When  = 3,  = 3, so (3) = 3.

6. (a) () approaches 4 as  approaches−3 from the left, so lim
→−3−

() = 4.

(b) () approaches 4 as  approaches−3 from the right, so lim
→−3+

() = 4.

(c) lim
→−3

() = 4 because the limits in part (a) and part (b) are equal.

(d) (−3) is not defined, so it doesn’t exist.

(e) () approaches 1 as  approaches 0 from the left, so lim
→0−

() = 1.

(f ) () approaches−1 as  approaches 0 from the right, so lim
→0+

() = −1.

(g) lim
→0

() does not exist because the limits in part (e) and part (f ) are not equal.

(h) (0) = 1 since the point (0 1) is on the graph of .

(i) Since lim
→2−

() = 2 and lim
→2+

() = 2, we have lim
→2

() = 2.

( j) (2) is not defined, so it doesn’t exist.
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10. A patient receives a 150-mg injection of a drug every 4 hours. The graph shows the amount f(t) of the drug in the

bloodstream after t hours. Find lim
t→12−

f(t) and lim
t→12+

f(t) and explain the significance of these one-sided limits.
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 (f ) The equations of the vertical asymptotes.

x

y

0 6_3_7

 10.  A patient receives a 150-mg injection of a drug every 
4 hours. The graph shows the amount f std of the drug in 
the blood stream after t hours. Find

lim
tl 122

 f std    and    lim
tl 121

 f std

and explain the significance of these one-sided limits.

4 8 12 16 t

f(t)

150

0

300

11–12 Sketch the graph of the function and use it to determine 
the values of a for which limx l a f sxd exists.

 11. f sxd − H1 1 x

x 2

2 2 x

if x , 21

if  21 < x , 1

if x > 1

 12. f sxd − H1 1 sin x

cos x

sin x

if x , 0

if  0 < x < �

if x . �

 13–14 Use the graph of the function f  to state the value of 
each limit, if it exists. If it does not exist, explain why.

(a) lim
x l 02 

f sxd   (b) lim
x l 01 

f sxd   (c) lim
x l 0 

f sxd

 13. f sxd −
1

1 1 e 1yx  14. f sxd −
x 2 1 x

sx 3 1 x 2 

15–18 Sketch the graph of an example of a function f  that  
satisfies all of the given conditions.

 15. lim
x l 02

 f sxd − 21,  lim
x l 01

 f sxd − 2,  f s0d − 1

 16. lim
x l 0

 f sxd − 1,  lim
x l 32

 f sxd − 22,  lim
x l 31

 f sxd − 2,

 f s0d − 21,  f s3d − 1

;

 17. lim
x l 31

 f sxd − 4,  lim
x l 32

 f sxd − 2,  lim
x l 22

 f sxd − 2,

 f s3d − 3,  f s22d − 1

 18. lim
x l 02

 f sxd − 2,  lim
x l 01

 f sxd − 0,  lim
x l 42

 f sxd − 3,

 lim
x l 41

 f sxd − 0,  f s0d − 2,  f s4d − 1

19–22 Guess the value of the limit (if it exists) by evaluating 
the function at the given numbers (correct to six decimal places).

 19.  lim
x l

 

3
 
x 2 2 3x

x 2 2 9
,  

 x − 3.1, 3.05, 3.01, 3.001, 3.0001, 

 2.9, 2.95, 2.99, 2.999, 2.9999

 20.  lim
x l

 

23
 
x 2 2 3x

x 2 2 9
,

 x − 22.5, 22.9, 22.95, 22.99, 22.999, 22.9999,

 23.5, 23.1, 23.05, 23.01, 23.001, 23.0001

 21.  lim
tl 0

 
e5 t 2 1

t
,  t − 60.5, 60.1, 60.01, 60.001, 60.0001

 22. lim
hl 0

 
s2 1 hd5 2 32

h
,

h − 60.5, 60.1, 60.01, 60.001, 60.0001

23–28 Use a table of values to estimate the value of the limit. 
If you have a graphing device, use it to confirm your result 
graphically.

 23. lim
x l 4

 
ln x 2 ln 4

x 2 4
 24. lim

p l 21
 

1 1 p 9

1 1 p 15

 25.  lim
� l 0

 
sin 3�

tan 2�
 26. lim

t l 0
 
5 t 2 1

t

 27.  lim
x l01

 x x  28. lim
x l01

 x 2 ln x

 29.  (a)  By graphing the function f sxd − scos 2x 2 cos xdyx 2 
and zooming in toward the point where the graph 
crosses the y-axis, estimate the value of lim x l 0 f sxd.

 (b)  Check your answer in part (a) by evaluating f sxd for  
values of x that approach 0.

 30.  (a)  Estimate the value of

lim
x l 0

 
sin x

sin �x

  by graphing the function f sxd − ssin xdyssin �xd. 
State your answer correct to two decimal places.

 (b)  Check your answer in part (a) by evaluating f sxd for  
values of x that approach 0.

;

;
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Solution:

SECTION 2.2 THE LIMIT OF A FUNCTION ¤ 71

(k) () approaches 3 as  approaches 5 from the right, so lim
→5+

() = 3.

(l) () does not approach any one number as  approaches 5 from the left, so lim
→5−

() does not exist.

7. (a) lim
→0−

() = −1 (b) lim
→0+

() = −2

(c) lim
→0

() does not exist because the limits in part (a) and part (b) are not equal.

(d) lim
→2−

() = 2 (e) lim
→2+

() = 0

(f ) lim
→2

() does not exist because the limits in part (d) and part (e) are not equal.

(g) (2) = 1 (h) lim
→4

() = 3

8. (a) lim
→−3

() =∞ (b) lim
→2−

() = −∞

(c) lim
→2+

() =∞ (d) lim
→−1

() = −∞

(e) The equations of the vertical asymptotes are  = −3,  = −1 and  = 2.

9. (a) lim
→−7

() = −∞ (b) lim
→−3

() =∞ (c) lim
→0

() =∞

(d) lim
→6−

() = −∞ (e) lim
→6+

() =∞

(f ) The equations of the vertical asymptotes are  = −7,  = −3,  = 0, and  = 6.

10. lim
→12−

() = 150 mg and lim
→12

+
() = 300 mg. These limits show that there is an abrupt change in the amount of drug in

the patient’s bloodstream at  = 12 h. The left-hand limit represents the amount of the drug just before the fourth injection.

The right-hand limit represents the amount of the drug just after the fourth injection.

11. From the graph of

() =


1 +  if   −1

2 if −1 ≤   1

2−  if  ≥ 1

,

we see that lim
→

() exists for all  except  = −1. Notice that the

right and left limits are different at  = −1.

12. From the graph of

() =


1 + sin if   0

cos if 0 ≤  ≤ 

sin if   

,

we see that lim
→

() exists for all  except  = . Notice that the

right and left limits are different at  = .
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16. Sketch the graph of an example of a function f that satisfies all of the given conditions.

lim
x→0

f(x) = 4, lim
x→8−

f(x) = 1, lim
x→8+

f(x) = −3, f(0) = 6, f(8) = −1

Solution:

80 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

11. From the graph of  we see that lim
→0−

() = 1, but lim
→0+

() = −1, so

lim
→

() does not exist for  = 0. However, lim
→

() exists for all other

values of . Thus, lim
→

() exists for all  in (−∞ 0) ∪ (0∞).

12. From the graph of  we see that lim
→2−

() = 2, but lim
→2+

() = 1, so

lim
→

() does not exist for  = 2. However, lim
→

() exists for all other

values of . Thus, lim
→

() exists for all  in (−∞ 2) ∪ (2∞).

13. (a) From the graph, lim
→0−

() = −1.

() = 
√
1 + −2

(b) From the graph, lim
→0+

() = 1.

(c) Since lim
→0−

() 6= lim
→0+

(), lim
→0

() does not exist.

14. (a) From the graph, lim
→0−

() = −2.

() =
1 − 2
1 + 1

(b) From the graph, lim
→0+

() = 1.

(c) Since lim
→0−

() 6= lim
→0+

(), lim
→0

() does not exist.

15. lim
→1−

() = 3, lim
→1+

() = 0, (1) = 2

16. lim
→0

() = 4, lim
→8−

() = 1, lim
→8+

() = −3,

(0) = 6, (8) = −1
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38. Determine the infinite limit. lim
x→3−

x2+4x
x2−2x−3

Solution:

SECTION 2.2 THE LIMIT OF A FUNCTION ¤ 83

28. For () = 2 ln:

 ()

01 −0023026
001 −0000461
0001 −0000007
00001 −0000000

It appears that lim
→0+

() = 0.

The graph confirms that result.

29. lim
→5+

+ 1

− 5 =∞ since the numerator is positive and the denominator approaches 0 from the positive side as → 5+.

30. lim
→5−

+ 1

− 5 = −∞ since the numerator is positive and the denominator approaches 0 from the negative side as → 5−.

31. lim
→2

2

(− 2)2 =∞ since the numerator is positive and the denominator approaches 0 through positive values as → 2.

32. lim
→3−

√


(− 3)5 = −∞ since the numerator is positive and the denominator approaches 0 from the negative side as → 3−.

33. lim
→1+

ln(
√
− 1) = −∞ since

√
− 1→ 0+ as → 1+.

34. lim
→0+

ln(sin) = −∞ since sin→ 0+ as → 0+.

35. lim
→(2)+

1


sec = −∞ since 1


is positive and sec→−∞ as → (2)+.

36. lim
→−

 cot = −∞ since  is positive and cot→ −∞ as → −.

37. lim
→1

2 + 2

2 − 2+ 1 = lim
→1

2 + 2

(− 1)2 =∞ since the numerator is positive and the denominator approaches 0 through positive

values as → 1.

38. lim
→3−

2 + 4

2 − 2− 3 = lim
→3−

2 + 4

(− 3)(+ 1) = −∞ since the numerator is positive and the denominator approaches 0

through negative values as → 3−.

39. lim
→0

(ln2 − −2) = −∞ since ln2 →−∞ and −2 →∞ as → 0.

40. lim
→0+


1


− ln


=∞ since 1


→∞ and ln→ −∞ as → 0+.

41. The denominator of () = − 1
2+ 4

is equal to 0 when  = −2 (and the numerator is not), so  = −2 is the vertical

asymptote of the function.
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42. (a) Find the vertical asymptotes of the function y = x2+1
3x−2x2

(b) Confirm your answer to part (a) by graphing the function.

Solution:
76 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

44. (a) The denominator of  =
2 + 1

3− 22
=

2 + 1

(3− 2)
is equal to zero when

 = 0 and  = 3
2

(and the numerator is not), so  = 0 and  = 15 are

vertical asymptotes of the function.

(b)

45. (a) () =
1

3 − 1
.

From these calculations, it seems that

lim
→1−

() = −∞ and lim
→1+

() =∞.

 ()

05 −114

09 −369

099 −337

0999 −3337

09999 −33337

099999 −33,3337

 ()

15 042

11 302

101 330

1001 3330

10001 33330

100001 33,3333

(b) If  is slightly smaller than 1, then 3 − 1 will be a negative number close to 0, and the reciprocal of 3 − 1, that is, (),

will be a negative number with large absolute value. So lim
→1−

() = −∞.

If  is slightly larger than 1, then 3 − 1 will be a small positive number, and its reciprocal, (), will be a large positive

number. So lim
→1+

() =∞.

(c) It appears from the graph of  that

lim
→1−

() = −∞ and lim
→1+

() =∞.

46. (a) From the graphs, it seems that lim
→0

tan 4


= 4. (b)

 ()

±01 4227 932

±001 4002 135

±0001 4000 021

±00001 4000 000

47. (a) Let () = (1 + )
1.

 ()

−0001 271964

−00001 271842

−000001 271830

−0000001 271828

0000001 271828

000001 271827

00001 271815

0001 271692

It appears that lim
→0

(1 + )
1 ≈ 271828, which is approximately .

In Section 3.6 we will see that the value of the limit is exactly .

(b)
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