Section 2.1 The Tangent and Velocity Problems

3. The point $P(2,-1)$ lies on the curve $y=1 /(1-x)$.
(a) If Q is the point $(x, 1 /(1-x))$, use your calculator to find the slope of the secant line $P Q$ (correct to six decimal places) for the following values of x :
(i) 1.5
(ii) 1.9
(iii) 1.99
(iv) 1.999
(v) 2.5 (vi) 2.1
(vii) 2.01 (viii) 2.001
(b) Using the results of part (a), guess the value of the slope of the tangent line to the curve at $P(2,-1)$.
(c) Using the slope from part (b), find an equation of the tangent line to the curve at $P(2,-1)$.

Solution:

(a) $y=\frac{1}{1-x}, P(2,-1)$

	x	$Q(x, 1 /(1-x))$	$m_{P Q}$
(i)	1.5	$(1.5,-2)$	2
(ii)	1.9	$(1.9,-1.111111)$	1.111111
(iii)	1.99	$(1.99,-1.010101)$	1.010101
(iv)	1.999	$(1.999,-1.001001)$	1.001001
(v)	2.5	$(2.5,-0.666667)$	0.666667
(vi)	2.1	$(2.1,-0.909091)$	0.909091
(vii)	2.01	$(2.01,-0.990099)$	0.990099
(viii)	2.001	$(2.001,-0.999001)$	0.999001

(b) The slope appears to be 1 .
(c) Using $m=1$, an equation of the tangent line to the curve at $P(2,-1)$ is $y-(-1)=1(x-2)$, or $y=x-3$.
6. If a rock is thrown upward on the planet Mars with a velocity of $10 \mathrm{~m} / \mathrm{s}$, its height in meters t seconds later is given by $y=10 t-1.86 t^{2}$.
(a) Find the average velocity over the given time intervals: (i) $[1,2]$ (ii) $[1,1.5]$ (iii) $[1,1.1]$ (iv) $[1,1.01]$ (v) [1,1.001]
(b) Estimate the instantaneous velocity when $t=1$.

Solution:

(a) $y=y(t)=10 t-1.86 t^{2}$. At $t=1, y=10(1)-1.86(1)^{2}=8.14$. The average velocity between times 1 and $1+h$ is $v_{\text {ave }}=\frac{y(1+h)-y(1)}{(1+h)-1}=\frac{\left[10(1+h)-1.86(1+h)^{2}\right]-8.14}{h}=\frac{6.28 h-1.86 h^{2}}{h}=6.28-1.86 h$, if $h \neq 0$.
(i) $[1,2]: h=1, v_{\text {ave }}=4.42 \mathrm{~m} / \mathrm{s}$
(ii) $[1,1.5]: h=0.5, v_{\text {ave }}=5.35 \mathrm{~m} / \mathrm{s}$
(iii) $[1,1.1]: h=0.1, v_{\text {ave }}=6.094 \mathrm{~m} / \mathrm{s}$
(iv) $[1,1.01]: h=0.01, v_{\text {ave }}=6.2614 \mathrm{~m} / \mathrm{s}$
(v) $[1,1.001]: h=0.001, v_{\text {ave }}=6.27814 \mathrm{~m} / \mathrm{s}$
(b) The instantaneous velocity when $t=1$ (h approaches 0$)$ is $6.28 \mathrm{~m} / \mathrm{s}$.

