Section 2.1 The Tangent and Velocity Problems

- 3. The point P(2, -1) lies on the curve y = 1/(1 x).
 - (a) If Q is the point (x, 1/(1 − x)), use your calculator to find the slope of the secant line PQ (correct to six decimal places) for the following values of x:
 (i) 1.5 (ii) 1.0 (iii) 1.00 (ii) 1.000 (i) 2.5 (iii) 2.1 (iii) 2.01 (iiii) 2.001
 - (i) 1.5 (ii) 1.9 (iii) 1.99 (iv) 1.999 (v) 2.5 (vi) 2.1 (vii) 2.01 (viii) 2.001

 $0.999\,001$

- (b) Using the results of part (a), guess the value of the slope of the tangent line to the curve at P(2, -1).
- (c) Using the slope from part (b), find an equation of the tangent line to the curve at P(2, -1).

Solution:

(a) $y = \frac{1}{1-x}, P(2, -1)$				
		x	Q(x, 1/(1-x))	m_{PQ}
	(i)	1.5	(1.5, -2)	2
	(ii)	1.9	(1.9, -1.111111)	1.111111
	(iii)	1.99	(1.99, -1.010101)	1.010101
	(iv)	1.999	(1.999, -1.001001)	1.001001
	(v)	2.5	(2.5, -0.666667)	0.666667
	(vi)	2.1	(2.1, -0.909091)	0.909091
	(vii)	2.01	(2.01, -0.990099)	0.990099

(b) The slope appears to be 1.

```
 (c) Using m = 1, an equation of the tangent line to the curve at P(2, -1) is y - (-1) = 1(x - 2), or y = x - 3.
```

- 6. If a rock is thrown upward on the planet Mars with a velocity of 10 m/s, its height in meters t seconds later is given by $y = 10t - 1.86t^2$.
 - (a) Find the average velocity over the given time intervals: (i) [1,2] (ii) [1,1.5] (iii) [1,1.1] (iv) [1,1.01] (v) [1,1.001]
 - (b) Estimate the instantaneous velocity when t = 1.

(2.001, -0.999001)

Solution:

(viii)

2.001

(a) $y = y(t) = 10t - 1.86t^2$. At t = 1, $y = 10(1) - 1.86(1)^2 = 8.14$. The average velocity between times 1 and 1 + h is

$$\begin{aligned} v_{\text{ave}} &= \frac{y(1+h) - y(1)}{(1+h) - 1} = \frac{\left\lfloor 10(1+h) - 1.86(1+h)^2 \right\rfloor - 8.14}{h} = \frac{6.28h - 1.86h^2}{h} = 6.28 - 1.86h, \text{ if } h \neq 0. \end{aligned}$$
(i) $[1, 2]$: $h = 1, v_{\text{ave}} = 4.42 \text{ m/s}$
(ii) $[1, 1.5]$: $h = 0.5, v_{\text{ave}} = 5.35 \text{ m/s}$
(iii) $[1, 1.1]$: $h = 0.1, v_{\text{ave}} = 6.094 \text{ m/s}$
(iv) $[1, 1.01]$: $h = 0.01, v_{\text{ave}} = 6.2614 \text{ m/s}$
(v) $[1, 1.001]$: $h = 0.001, v_{\text{ave}} = 6.27814 \text{ m/s}$

(b) The instantaneous velocity when t = 1 (h approaches 0) is 6.28 m/s.