
Section 17.2 Nonhomogeneous Linear Equations

Review(p.1221-1222)

7. Solve the differential equation. d2y
dx2 − 2 dy

dx + y = x cosx.

Solution:
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1. True. See Theorem 17.1.3.

2. False. The differential equation is not homogeneous.

3. True. cosh and sinh are linearly independent solutions of this linear homogeneous equation.

4. False.  =  is a solution of the complementary equation, so we have to take () = .

1. The auxiliary equation is 42 − 1 = 0 ⇒ (2 + 1)(2 − 1) = 0 ⇒  = ± 1
2
. Then the general solution

is  = 1
2 + 2

−2.

2. The auxiliary equation is 2 − 2 + 10 = 0 ⇒  = 1± 3, so  = (1 cos 3+ 2 sin 3).

3. The auxiliary equation is 2 + 3 = 0 ⇒  = ±√3 . Then the general solution is  = 1 cos
√

3


+ 2 sin
√

3

.

4. The auxiliary equation is 2 + 8 + 16 = 0 ⇒ ( + 4)2 = 0 ⇒  = −4, so the general solution is

 = 1
−4 + 2

−4.

5. 2 − 4 + 5 = 0 ⇒  = 2± , so  () = 2(1 cos+ 2 sin). Try  () = 2 ⇒ 0 = 22

and 00 = 42. Substitution into the differential equation gives 42 − 82 + 52 = 2 ⇒  = 1 and

the general solution is () = 2(1 cos+ 2 sin) + 2.

6. 2 +  − 2 = 0 ⇒  = 1,  = −2 and () = 1
 + 2

−2. Try () = 2 ++ ⇒ 0 = 2+

and 00 = 2. Substitution gives 2+ 2+ − 22 − 2− 2 = 2 ⇒  =  = − 1
2
,  = − 3

4
so the

general solution is () = 1
 + 2

−2 − 1
2
2 − 1

2
− 3

4
.

7. 2 − 2 + 1 = 0 ⇒  = 1 and () = 1
 + 2

. Try () = ( +) cos + ( + ) sin ⇒

0 = ( −−) sin+ (++) cos and 00 = (2 − −) cos+ (−2− −) sin. Substitution

gives (−2+ 2 − 2− 2) cos+ (2− 2+ 2 − 2) sin =  cos ⇒  = 0,  =  =  = − 1
2
.

The general solution is () = 1
 + 2

 − 1
2

cos− 1
2
( + 1) sin.

8. 2 + 4 = 0 ⇒  = ±2 and () = 1 cos 2 + 2 sin 2. Try () =  cos 2+ sin 2 so that no term

of  is a solution of the complementary equation. Then 0 = (+ 2) cos 2 + ( − 2) sin 2 and

00 = (4 − 4) cos 2 + (−4− 4) sin 2. Substitution gives 4 cos 2− 4 sin 2 = sin 2 ⇒

 = − 1
4
and  = 0. The general solution is () = 1 cos 2+ 2 sin 2− 1

4
 cos 2.
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8. Solve the differential equation. d2y
dx2 + 4y = sin 2x.

Solution:
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1. True. See Theorem 17.1.3.

2. False. The differential equation is not homogeneous.

3. True. cosh and sinh are linearly independent solutions of this linear homogeneous equation.

4. False.  =  is a solution of the complementary equation, so we have to take () = .

1. The auxiliary equation is 42 − 1 = 0 ⇒ (2 + 1)(2 − 1) = 0 ⇒  = ± 1
2
. Then the general solution

is  = 1
2 + 2

−2.

2. The auxiliary equation is 2 − 2 + 10 = 0 ⇒  = 1± 3, so  = (1 cos 3+ 2 sin 3).

3. The auxiliary equation is 2 + 3 = 0 ⇒  = ±√3 . Then the general solution is  = 1 cos
√

3


+ 2 sin
√

3

.

4. The auxiliary equation is 2 + 8 + 16 = 0 ⇒ ( + 4)2 = 0 ⇒  = −4, so the general solution is

 = 1
−4 + 2

−4.

5. 2 − 4 + 5 = 0 ⇒  = 2± , so  () = 2(1 cos+ 2 sin). Try  () = 2 ⇒ 0 = 22

and 00 = 42. Substitution into the differential equation gives 42 − 82 + 52 = 2 ⇒  = 1 and

the general solution is () = 2(1 cos+ 2 sin) + 2.

6. 2 +  − 2 = 0 ⇒  = 1,  = −2 and () = 1
 + 2

−2. Try () = 2 ++ ⇒ 0 = 2+

and 00 = 2. Substitution gives 2+ 2+ − 22 − 2− 2 = 2 ⇒  =  = − 1
2
,  = − 3

4
so the

general solution is () = 1
 + 2

−2 − 1
2
2 − 1

2
− 3

4
.

7. 2 − 2 + 1 = 0 ⇒  = 1 and () = 1
 + 2

. Try () = ( +) cos + ( + ) sin ⇒

0 = ( −−) sin+ (++) cos and 00 = (2 − −) cos+ (−2− −) sin. Substitution

gives (−2+ 2 − 2− 2) cos+ (2− 2+ 2 − 2) sin =  cos ⇒  = 0,  =  =  = − 1
2
.

The general solution is () = 1
 + 2

 − 1
2

cos− 1
2
( + 1) sin.

8. 2 + 4 = 0 ⇒  = ±2 and () = 1 cos 2 + 2 sin 2. Try () =  cos 2+ sin 2 so that no term

of  is a solution of the complementary equation. Then 0 = (+ 2) cos 2 + ( − 2) sin 2 and

00 = (4 − 4) cos 2 + (−4− 4) sin 2. Substitution gives 4 cos 2− 4 sin 2 = sin 2 ⇒

 = − 1
4
and  = 0. The general solution is () = 1 cos 2+ 2 sin 2− 1

4
 cos 2.
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mass m within the earth at a distance r from the earth’s center, the gravitational force attracting the particle to

the center is

Fr =
−GMrm

r2

where G is the gravitational constant and Mr is the mass of the earth within the sphere of radius r.

(a) Show that Fr = −GMm
R3 r.

(b) Suppose a hole is drilled through the earth along a diameter. Show that if a particle of mass m is dropped from

rest at the surface, into the hole, then the distance y = y(t) of the particle from the center of the earth at time t is

given by

y′′(t) = −k2y(t)

where k2 = GM/R3 = g/R.

(c) Conclude from part (b) that the particle undergoes simple harmonic motion. Find the period T .

(d) With what speed does the particle pass through the center of the earth?

Solution:

1
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7 =
(−1)3

3 · 5 · 7 =
(−1)3233!

7!
,    , 2+1 =

(−1) 2 !

(2+ 1)!
for  = 0 1 2    . Thus the solution to the initial-value problem

is () =
∞
=0


 =

∞
=0

(−1) 2 !

(2+ 1)!
2+1.

18. Let () =
∞
=0


. Then 00 () =

∞
=0

 (− 1) 
−2 =

∞
=0

(+ 2)(+ 1)+2
 and the differential equation

becomes
∞
=0

[(+ 2)(+ 1)+2 − (+ 2)] = 0. Thus the recursion relation is +2 =


+ 1
for

 = 0, 1, 2,    . Given 0 and 1, we have 2 =
0

1
, 4 =

2

3
=

0

1 · 3 , 6 =
4

5
=

0

1 · 3 · 5 ,    ,

2 =
0

1 · 3 · 5 · · · · · (2− 1)
= 0

2−1(− 1)!

(2− 1)!
. Similarly 3 =

1

2
, 5 =

3

4
=

1

2 · 4 ,

7 =
5

6
=

1

2 · 4 · 6 ,    , 2+1 =
1

2 · 4 · 6 · · · · · 2 =
1

2 !
. Thus the general solution is

() =
∞
=0


 = 0 + 0

∞
=1

2−1(− 1)!2

(2− 1)!
+ 

∞
=0

2+1

2 !
. But

∞
=0

2+1

2 !
= 

∞
=0


1
2
2


!
= 

22,

so () = 1
22 + 0 + 0

∞
=1

2−1(− 1)!2

(2− 1)!
.

19. Here the initial-value problem is 200 + 400 + 400 = 12,  (0) = 001, 0(0) = 0. Then

() = −10(1 cos 10 + 2 sin 10) and we try () = . Thus the general solution is

() = −10(1 cos 10 + 2 sin 10) + 3
100

. But 001 = 0(0) = 1 + 003 and 0 = 00(0) = −101 + 102,

so 1 = −002 = 2. Hence the charge is given by() = −002−10(cos 10 + sin 10) + 003.

20. By Hooke’s Law the spring constant is  = 64 and the initial-value problem is 200 + 160 + 64 = 0, (0) = 0,

0(0) = 24. Thus the general solution is () = −4(1 cos 4 + 2 sin 4). But 0 = (0) = 1 and

24 = 0(0) = −41 + 42 ⇒ 1 = 0, 2 = 06. Thus the position of the mass is given by () = 06−4 sin 4.

21. (a) Since we are assuming that the earth is a solid sphere of uniform density, we can calculate the density  as follows:

 =
mass of earth
volume of earth

=


4
3
3

. If  is the volume of the portion of the earth which lies within a distance  of the center,

then  = 4
3
3 and =  =

3

3
. Thus  = −

2
= −

3
.

(b) The particle is acted upon by a varying gravitational force during its motion. By Newton’s Second Law of Motion,


2

2
=  = −

3
, so 00() = −2 () where 2 =



3
. At the surface, − =  = −

2
, so

 =


2
. Therefore 2 =




.
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(c) The differential equation 00 + 2 = 0 has auxiliary equation 2 + 2 = 0. (This is the  of Section 17.1,

not the  measuring distance from the earth’s center.) The roots of the auxiliary equation are±, so the general solution of

our differential equation for  is () = 1 cos  + 2 sin . It follows that 0() = −1 sin  + 2 cos . Now

 (0) =  and 0(0) = 0, so 1 =  and 2 = 0. Thus () =  cos  and 0() = − sin . This is simple

harmonic motion (see Section 17.3) with amplitude , frequency , and phase angle 0. The period is  = 2.

 ≈ 6370 km = 6370× 106 m and  = 98 ms2, so  =

 ≈ 124× 10−3 s−1 and

 = 2 ≈ 5079 s ≈ 85 min.

(d) () = 0 ⇔ cos  = 0 ⇔  = 
2

+  for some integer  ⇒ 0() = − sin


2

+ 


= ±.

Thus the particle passes through the center of the earth with speed  ≈ 7899 kms ≈ 28,400 kmh.
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