Section 17.2 Nonhomogeneous Linear Equations

Review(p.1221-1222)
7. Solve the differential equation. $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x \cos x$.

Solution:

$$
\begin{aligned}
& r^{2}-2 r+1=0 \Rightarrow r=1 \text { and } y_{c}(x)=c_{1} e^{x}+c_{2} x e^{x} . \operatorname{Try} y_{p}(x)=(A x+B) \cos x+(C x+D) \sin x \Rightarrow \\
& y_{p}^{\prime}=(C-A x-B) \sin x+(A+C x+D) \cos x \text { and } y_{p}^{\prime \prime}=(2 C-B-A x) \cos x+(-2 A-D-C x) \sin x . \text { Substitution } \\
& \text { gives }(-2 C x+2 C-2 A-2 D) \cos x+(2 A x-2 A+2 B-2 C) \sin x=x \cos x \Rightarrow A=0, B=C=D=-\frac{1}{2}
\end{aligned}
$$

The general solution is $y(x)=c_{1} e^{x}+c_{2} x e^{x}-\frac{1}{2} \cos x-\frac{1}{2}(x+1) \sin x$.
8. Solve the differential equation. $\frac{d^{2} y}{d x^{2}}+4 y=\sin 2 x$.

Solution:

$r^{2}+4=0 \Rightarrow r= \pm 2 i$ and $y_{c}(x)=c_{1} \cos 2 x+c_{2} \sin 2 x$. Try $y_{p}(x)=A x \cos 2 x+B x \sin 2 x$ so that no term of y_{p} is a solution of the complementary equation. Then $y_{p}^{\prime}=(A+2 B x) \cos 2 x+(B-2 A x) \sin 2 x$ and $y_{p}^{\prime \prime}=(4 B-4 A x) \cos 2 x+(-4 A-4 B x) \sin 2 x$. Substitution gives $4 B \cos 2 x-4 A \sin 2 x=\sin 2 x \quad \Rightarrow$ $A=-\frac{1}{4}$ and $B=0$. The general solution is $y(x)=c_{1} \cos 2 x+c_{2} \sin 2 x-\frac{1}{4} x \cos 2 x$.
21. Assume that the earth is a solid sphere of uniform density with mass M and radius $R=3960 \mathrm{mi}$. For a particle of mass m within the earth at a distance r from the earth's center, the gravitational force attracting the particle to the center is

$$
F_{r}=\frac{-G M_{r} m}{r^{2}}
$$

where G is the gravitational constant and M_{r} is the mass of the earth within the sphere of radius r.
(a) Show that $F_{r}=\frac{-G M m}{R^{3}} r$.
(b) Suppose a hole is drilled through the earth along a diameter. Show that if a particle of mass m is dropped from rest at the surface, into the hole, then the distance $y=y(t)$ of the particle from the center of the earth at time t is given by

$$
y^{\prime \prime}(t)=-k^{2} y(t)
$$

where $k^{2}=G M / R^{3}=g / R$.
(c) Conclude from part (b) that the particle undergoes simple harmonic motion. Find the period T.
(d) With what speed does the particle pass through the center of the earth?

Solution:

(a) Since we are assuming that the earth is a solid sphere of uniform density, we can calculate the density ρ as follows: $\rho=\frac{\text { mass of earth }}{\text { volume of earth }}=\frac{M}{\frac{4}{3} \pi R^{3}}$. If V_{r} is the volume of the portion of the earth which lies within a distance r of the center, then $V_{r}=\frac{4}{3} \pi r^{3}$ and $M_{r}=\rho V_{r}=\frac{M r^{3}}{R^{3}}$. Thus $F_{r}=-\frac{G M_{r} m}{r^{2}}=-\frac{G M m}{R^{3}} r$.
(b) The particle is acted upon by a varying gravitational force during its motion. By Newton's Second Law of Motion, $m \frac{d^{2} y}{d t^{2}}=F_{y}=-\frac{G M m}{R^{3}} y$, so $y^{\prime \prime}(t)=-k^{2} y(t)$ where $k^{2}=\frac{G M}{R^{3}}$. At the surface, $-m g=F_{R}=-\frac{G M m}{R^{2}}$, so $g=\frac{G M}{R^{2}}$. Therefore $k^{2}=\frac{g}{R}$.
(c) The differential equation $y^{\prime \prime}+k^{2} y=0$ has auxiliary equation $r^{2}+k^{2}=0$. (This is the r of Section 17.1, not the r measuring distance from the earth's center.) The roots of the auxiliary equation are $\pm i k$, so the general solution of our differential equation for t is $y(t)=c_{1} \cos k t+c_{2} \sin k t$. It follows that $y^{\prime}(t)=-c_{1} k \sin k t+c_{2} k \cos k t$. Now $y(0)=R$ and $y^{\prime}(0)=0$, so $c_{1}=R$ and $c_{2} k=0$. Thus $y(t)=R \cos k t$ and $y^{\prime}(t)=-k R \sin k t$. This is simple harmonic motion (see Section 17.3) with amplitude R, frequency k, and phase angle 0 . The period is $T=2 \pi / k$. $R \approx 6370 \mathrm{~km}=6370 \times 10^{6} \mathrm{~m}$ and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, so $k=\sqrt{g / R} \approx 1.24 \times 10^{-3} \mathrm{~s}^{-1}$ and $T=2 \pi / k \approx 5079 \mathrm{~s} \approx 85 \mathrm{~min}$.
(d) $y(t)=0 \Leftrightarrow \cos k t=0 \quad \Leftrightarrow \quad k t=\frac{\pi}{2}+\pi n$ for some integer $n \quad \Rightarrow \quad y^{\prime}(t)=-k R \sin \left(\frac{\pi}{2}+\pi n\right)= \pm k R$. Thus the particle passes through the center of the earth with speed $k R \approx 7.899 \mathrm{~km} / \mathrm{s} \approx 28,400 \mathrm{~km} / \mathrm{h}$.

