Section 15.8 Triple Integrals in Spherical Coordinates

10. Write the equation in spherical coordinates. (a) $z=x^{2}+y^{2}$ (b) $z=x^{2}-y^{2}$.

Solution:

(a) $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta$, and $z=\rho \cos \phi$, so the equation $z=x^{2}+y^{2}$ becomes $\rho \cos \phi=(\rho \sin \phi \cos \theta)^{2}+(\rho \sin \phi \sin \theta)^{2}$ or $\rho \cos \phi=\rho^{2} \sin ^{2} \phi$. If $\rho \neq 0$, this becomes $\cos \phi=\rho \sin ^{2} \phi$ or $\rho=\cos \phi \csc ^{2} \phi$ or $\rho=\cot \phi \csc \phi .(\rho=0$ corresponds to the origin which is included in the surface.)
(b) The equation $z=x^{2}-y^{2}$ becomes $\rho \cos \phi=(\rho \sin \phi \cos \theta)^{2}-(\rho \sin \phi \sin \theta)^{2}$ or $\rho \cos \phi=\rho^{2}\left(\sin ^{2} \phi\right)\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \Leftrightarrow \rho \cos \phi=\rho^{2} \sin ^{2} \phi \cos 2 \theta$. If $\rho \neq 0$, this becomes $\cos \phi=\rho \sin ^{2} \phi \cos 2 \theta$. ($\rho=0$ corresponds to the origin which is included in the surface.)
21. (a) Express the triple integral $\iiint_{E} f(x, y, z) d V$ as an iterated integral in spherical coordinates for the given function f and solid region E.
(b) Evaluate the iterated integral.

$$
f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}
$$

Solution:

(a) The solid can be described in spherical coordinates by $E=\left\{(\rho, \theta, \phi) \mid 2 \leq \rho \leq 3, \frac{\pi}{2} \leq \theta \leq \frac{3 \pi}{2}, \frac{\pi}{2} \leq \phi \leq \pi\right\}$. Thus, $\iiint_{E} \sqrt{x^{2}+y^{2}+z^{2}} d V=\int_{\pi / 2}^{\pi} \int_{\pi / 2}^{3 \pi / 2} \int_{2}^{3} \rho \cdot \rho^{2} \sin \phi d \rho d \theta d \phi$.
(b) $\int_{\pi / 2}^{\pi} \int_{\pi / 2}^{3 \pi / 2} \int_{2}^{3} \rho^{3} \sin \phi d \rho d \theta d \phi=\int_{\pi / 2}^{\pi} \sin \phi d \phi \int_{\pi / 2}^{3 \pi / 2} d \theta \int_{2}^{3} \rho^{3} d \rho$

$$
=[-\cos \phi]_{\phi=\pi / 2}^{\phi=\pi}[\theta]_{\theta=\pi / 2}^{\theta=3 \pi / 2}\left[\frac{\rho^{4}}{4}\right]_{\rho=2}^{\rho=3}=(1)(\pi) \cdot \frac{1}{4}(81-16)=\frac{65 \pi}{4}
$$

28. Evaluate $\iiint_{E} \sqrt{x^{2}+y^{2}+z^{2}} d V$, where E lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$.

Solution:

In spherical coordinates, the cone $z=\sqrt{x^{2}+y^{2}}$ is equivalent to $\phi=\pi / 4$ (as in Example 4) and E is represented by
$\{(\rho, \theta, \phi) \mid 1 \leq \rho \leq 2,0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi / 4\}$. Also, $\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{\rho^{2}}=\rho$, so
$\iiint_{E} \sqrt{x^{2}+y^{2}+z^{2}} d V=\int_{0}^{\pi / 4} \int_{0}^{2 \pi} \int_{1}^{2} \rho \cdot \rho^{2} \sin \phi d \rho d \theta d \phi=\int_{0}^{\pi / 4} \sin \phi d \phi \int_{0}^{2 \pi} d \theta \int_{1}^{2} \rho^{3} d \rho$

$$
=[-\cos \phi]_{0}^{\pi / 4}[\theta]_{0}^{2 \pi}\left[\frac{1}{4} \rho^{4}\right]_{1}^{2}=\left(-\frac{\sqrt{2}}{2}+1\right)(2 \pi) \cdot \frac{1}{4}(16-1)=\frac{15}{2} \pi\left(1-\frac{\sqrt{2}}{2}\right)
$$

30. Use spherical coordinates. Find the average distance from a point in a ball of radius a to its center.

Solution:

If we center the ball at the origin, then the ball is given by
$B=\{(\rho, \theta, \phi) \mid 0 \leq \rho \leq a, 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi\}$ and the distance from any point (x, y, z) in the ball to the center $(0,0,0)$ is $\sqrt{x^{2}+y^{2}+z^{2}}=\rho$. Thus the average distance is

$$
\begin{aligned}
\frac{1}{V(B)} \iiint_{B} \rho d V & =\frac{1}{\frac{4}{3} \pi a^{3}} \int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{a} \rho \cdot \rho^{2} \sin \phi d \rho d \theta d \phi=\frac{3}{4 \pi a^{3}} \int_{0}^{\pi} \sin \phi d \phi \int_{0}^{2 \pi} d \theta \int_{0}^{a} \rho^{3} d \rho \\
& =\frac{3}{4 \pi a^{3}}[-\cos \phi]_{0}^{\pi}[\theta]_{0}^{2 \pi}\left[\frac{1}{4} \rho^{4}\right]_{0}^{a}=\frac{3}{4 \pi a^{3}}(2)(2 \pi)\left(\frac{1}{4} a^{4}\right)=\frac{3}{4} a
\end{aligned}
$$

