Section 15.7 Triple Integrals in Cylindrical Coordinates

11. Sketch the solid described by the given inequalities. $r^{2} \leq z \leq 8-r^{2}$

Solution:

 $z=r^{2} \Leftrightarrow z=x^{2}+y^{2}$, a circular paraboloid opening upward with vertex the origin,
and $z=8-r^{2} \Leftrightarrow z=8-\left(x^{2}+y^{2}\right)$, a circular paraboloid opening downward with vertex $(0,0,8)$. The paraboloids intersect when $r^{2}=8-r^{2} \quad \Leftrightarrow \quad r^{2}=4$. Thus $r^{2} \leq z \leq 8-r^{2}$ describes the solid above the paraboloid $z=x^{2}+y^{2}$ and below the paraboloid $z=8-x^{2}-y^{2}$ for $x^{2}+y^{2} \leq 4$.
16. (a) Express the triple integral $\iiint_{E} f(x, y, z) d V$ as an iterated integral in cylindrical coordinates for the given function f and solid region E.
(b) Evaluate the iterated integral.

Solution:

(a) In cylindrical coordinates, the region E is bounded above by the paraboloid $z=6-r^{2}$ and below by the cone $z=r$. The paraboloid and cone intersect when $6-r^{2}=r \Rightarrow r^{2}+r-6=0 \Rightarrow r=2(r>0)$, so the region can be described as $E=\left\{(r, \theta, z) \mid 0 \leq \theta \leq 2 \pi, 0 \leq r \leq 2, r \leq z \leq 6-r^{2}\right\}$. Then $\iiint_{E}(x y) d V=\int_{0}^{2 \pi} \int_{0}^{2} \int_{r}^{6-r^{2}} r \cos \theta \cdot r \sin \theta \cdot r d z d r d \theta$.
(b) $\int_{0}^{2 \pi} \int_{0}^{2} \int_{r}^{6-r^{2}} r^{3} \cos \theta \sin \theta d z d r d \theta=\int_{0}^{2 \pi} \int_{0}^{2} r^{3} \cos \theta \sin \theta[z]_{z=r}^{z=6-r^{2}} d r d \theta$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \int_{0}^{2} r^{3} \cos \theta \sin \theta\left(6 r^{3}-r^{4}-r^{5}\right) d r d \theta \\
& =\int_{0}^{2 \pi} \cos \theta \sin \theta d \theta \int_{0}^{2}\left(6 r^{3}-r^{4}-r^{5}\right) d r=0 \cdot \int_{0}^{2}\left(6 r^{3}-r^{4}-r^{5}\right) d r=0
\end{aligned}
$$

22. Evaluate $\iiint_{E}(x-y) d V$, where E is the solid that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=16$, above the $x y$-plane, and below the plane $z=y+4$.

Solution:

In cylindrical coordinates E is bounded by the planes $z=0, z=r \sin \theta+4$ and the cylinders $r=1$ and $r=4$, so E is given by $\{(r, \theta, z) \mid 0 \leq \theta \leq 2 \pi, 1 \leq r \leq 4,0 \leq z \leq r \sin \theta+4\}$. Thus

$$
\begin{aligned}
\iiint_{E}(x-y) d V & =\int_{0}^{2 \pi} \int_{1}^{4} \int_{0}^{r \sin \theta+4}(r \cos \theta-r \sin \theta) r d z d r d \theta=\int_{0}^{2 \pi} \int_{1}^{4}\left(r^{2} \cos \theta-r^{2} \sin \theta\right)[z]_{z=0}^{z=r \sin \theta+4} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{1}^{4}\left(r^{2} \cos \theta-r^{2} \sin \theta\right)(r \sin \theta+4) d r d \theta \\
& =\int_{0}^{2 \pi} \int_{1}^{4}\left[r^{3}\left(\sin \theta \cos \theta-\sin ^{2} \theta\right)+4 r^{2}(\cos \theta-\sin \theta)\right] d r d \theta \\
& =\int_{0}^{2 \pi}\left[\frac{1}{4} r^{4}\left(\sin \theta \cos \theta-\sin ^{2} \theta\right)+\frac{4}{3} r^{3}(\cos \theta-\sin \theta)\right]_{r=1}^{r=4} d \theta \\
& =\int_{0}^{2 \pi}\left[\left(64-\frac{1}{4}\right)\left(\sin \theta \cos \theta-\sin ^{2} \theta\right)+\left(\frac{256}{3}-\frac{4}{3}\right)(\cos \theta-\sin \theta)\right] d \theta \\
& =\int_{0}^{2 \pi}\left[\frac{255}{4}\left(\sin \theta \cos \theta-\sin ^{2} \theta\right)+84(\cos \theta-\sin \theta)\right] d \theta \\
& =\left[\frac{255}{4}\left(\frac{1}{2} \sin ^{2} \theta-\left(\frac{1}{2} \theta-\frac{1}{4} \sin 2 \theta\right)\right)+84(\sin \theta+\cos \theta)\right]_{0}^{2 \pi}=\frac{255}{4}(-\pi)+84(1)-0-84(1)=-\frac{255}{4} \pi
\end{aligned}
$$

30. Find the mass of a ball B given by $x^{2}+y^{2}+z^{2} \leq a^{2}$ if the density at any point is proportional to its distance from the z-axis

Solution:

Since density is proportional to the distance from the z-axis, we can say $\rho(x, y, z)=K \sqrt{x^{2}+y^{2}}$. Then

$$
\begin{aligned}
m & =2 \int_{0}^{2 \pi} \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-r^{2}}} K r^{2} d z d r d \theta=2 K \int_{0}^{2 \pi} \int_{0}^{a} r^{2} \sqrt{a^{2}-r^{2}} d r d \theta \\
& =2 K \int_{0}^{2 \pi}\left[\frac{1}{8} r\left(2 r^{2}-a^{2}\right) \sqrt{a^{2}-r^{2}}+\frac{1}{8} a^{4} \sin ^{-1}(r / a)\right]_{r=0}^{r=a} d \theta=2 K \int_{0}^{2 \pi}\left[\left(\frac{1}{8} a^{4}\right)\left(\frac{\pi}{2}\right)\right] d \theta=\frac{1}{4} a^{4} \pi^{2} K
\end{aligned}
$$

