Section 15.6 Triple Integrals

10. (a) Express the triple integral $\iiint_{E} f(x, y, z) d V$ as an iterated integral for the given function f and solid region E.
(b) Evaluate the iterated integral.

Solution:

(a) The solid region E can be described as $E=\left\{(x, y, z) \mid 0 \leq x \leq y, 0 \leq y \leq 2,0 \leq z \leq 4-y^{2}\right\}$.

Thus, $\iiint_{E} x y d V=\int_{0}^{2} \int_{0}^{y} \int_{0}^{4-y^{2}} x y d z d x d y$.
(b) $\int_{0}^{2} \int_{0}^{y} \int_{0}^{4-y^{2}} x y d z d x d y=\int_{0}^{2} \int_{0}^{y} x y[z]_{z=0}^{z=4-y^{2}} d x d y=\int_{0}^{2} \int_{0}^{y} x y\left(4-y^{2}\right) d x d y=\int_{0}^{2} \int_{0}^{y} x\left(4 y-y^{3}\right) d x d y$

$$
=\int_{0}^{2}\left(4 y-y^{3}\right)\left[\frac{x^{2}}{2}\right]_{x=0}^{x=y} d y=\frac{1}{2} \int_{0}^{2}\left(4 y^{3}-y^{5}\right) d y=\frac{1}{2}\left[y^{4}-\frac{y^{6}}{6}\right]_{0}^{2}=\frac{8}{3}
$$

26. Use a triple integral to find the volume of the given solid. The solid enclosed by the cylinder $x^{2}+z^{2}=4$ and the planes $y=-1$ and $y+z=4$.

Solution:

Here $E=\left\{(x, y, z) \mid-1 \leq y \leq 4-z, x^{2}+z^{2} \leq 4\right\}$, so

$$
\begin{aligned}
V & =\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{-1}^{4-z} d y d z d x=\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}(4-z+1) d z d x \\
& =\int_{-2}^{2}\left[5 z-\frac{1}{2} z^{2}\right]_{z=-\sqrt{4-x^{2}}}^{z=\sqrt{4-x^{2}}} d x=\int_{-2}^{2} 10 \sqrt{4-x^{2}} d x \\
& =10\left[\frac{x}{2} \sqrt{4-x^{2}}+2 \sin ^{-1}\left(\frac{x}{2}\right)\right]_{-2}^{2} \quad\left[\begin{array}{l}
\text { using trigonometric substitution or } \\
\text { Formula 30 in the Table of Integrals }
\end{array}\right] \\
& =10\left[2 \sin ^{-1}(1)-2 \sin ^{-1}(-1)\right]=20\left(\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right)=20 \pi
\end{aligned}
$$

Alternatively, use polar coordinates to evaluate the double integral:

$$
\begin{aligned}
\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}(5-z) d z d x & =\int_{0}^{2 \pi} \int_{0}^{2}(5-r \sin \theta) r d r d \theta \\
& =\int_{0}^{2 \pi}\left[\frac{5}{2} r^{2}-\frac{1}{3} r^{3} \sin \theta\right]_{r=0}^{r=2} d \theta \\
& =\int_{0}^{2 \pi}\left(10-\frac{8}{3} \sin \theta\right) d \theta \\
& \left.=10 \theta+\frac{8}{3} \cos \theta\right]_{0}^{2 \pi}=20 \pi
\end{aligned}
$$

38. The figure shows the region of integration for the integral

$$
\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{0}^{1-x} f(x, y, z) d y d z d x
$$

Rewrite this integral as an equivalent iterated integral in the five other orders.

Solution:

The projections of E onto the $x y$ - and $x z$-planes are as in the first two diagrams and so

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{0}^{1-x} f(x, y, z) d y d z d x & =\int_{0}^{1} \int_{0}^{\sqrt{1-z}} \int_{0}^{1-x} f(x, y, z) d y d x d z \\
& =\int_{0}^{1} \int_{0}^{1-y} \int_{0}^{1-x^{2}} f(x, y, z) d z d x d y=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x^{2}} f(x, y, z) d z d y d x
\end{aligned}
$$

Now the surface $z=1-x^{2}$ intersects the plane $y=1-x$ in a curve whose projection in the $y z$-plane is $z=1-(1-y)^{2}$ or $z=2 y-y^{2}$. So we must split up the projection of E on the $y z$-plane into two regions as in the third diagram. For (y, z) in $R_{1}, 0 \leq x \leq 1-y$ and for (y, z) in $R_{2}, 0 \leq x \leq \sqrt{1-z}$, and so the given integral is also equal to

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1-\sqrt{1-z}} \int_{0}^{\sqrt{1-z}} f(x, y, z) d x d y d z+\int_{0}^{1} \int_{1-\sqrt{1-z}}^{1} \int_{0}^{1-y} f(x, y, z) d x d y d z \\
&=\int_{0}^{1} \int_{0}^{2 y-y^{2}} \int_{0}^{1-y} f(x, y, z) d x d z d y+\int_{0}^{1} \int_{2 y-y^{2}}^{1} \int_{0}^{\sqrt{1-z}} f(x, y, z) d x d z d y
\end{aligned}
$$

42. Evaluate the triple integral using only geometric interpretation and symmetry.

$$
\iiint_{B}\left(z^{3}+\sin y+3\right) d V, \text { where } B \text { is the unit ball } x^{2}+y^{2}+z^{2} \leq 1 .
$$

Solution:

We can write $\iiint_{B}\left(z^{3}+\sin y+3\right) d V=\iiint_{B} z^{3} d V+\iiint_{B} \sin y d V+\iiint_{B} 3 d V$. But z^{3} is an odd function with respect to z and the region B is symmetric about the $x y$-plane, so $\iiint_{B} z^{3} d V=0$. Similarly, $\sin y$ is an odd function with respect to y and B is symmetric about the $x z$-plane, so $\iiint_{B} \sin y d V=0$. Thus
$\iiint_{B}\left(z^{3}+\sin y+3\right) d V=\iiint_{B} 3 d V=3 \cdot V(B)=3 \cdot \frac{4}{3} \pi(1)^{3}=4 \pi$.
58. Average Value The average value of a function $f(x, y, z)$ over a solid region E is defined to be

$$
f_{a v g}=\frac{1}{V(E)} \iiint_{E} f(x, y, z) d V
$$

where $V(E)$ is the volume of E. For instance, if ρ is a density function, then $\rho_{\text {ave }}$ is the average density of E. Find the average height of the points in the solid hemisphere $x^{2}+y^{2}+z^{2} \leq 1, z \geq 0$.

Solution:

The height of each point is given by its z-coordinate, so the average height of the points in $E=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1, z \geq 0\right\}$ is

$$
\frac{1}{V(E)} \iiint_{E} z d V
$$

Here $V(E)=\frac{1}{2} \cdot \frac{4}{3} \pi(1)^{3}=\frac{2}{3} \pi \quad$ [half the volume of a sphere], so

$$
\begin{aligned}
\frac{1}{V(E)} \iiint_{E} z d V & =\frac{1}{2 \pi / 3} \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} z d z d y d x=\frac{3}{2 \pi} \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\left[\frac{1}{2} z^{2}\right]_{z=0}^{z=\sqrt{1-x^{2}-y^{2}}} d y d x \\
& =\frac{3}{2 \pi} \cdot \frac{1}{2} \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\left(1-x^{2}-y^{2}\right) d y d x=\frac{3}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{1}\left(1-r^{2}\right) r d r d \theta \\
& =\frac{3}{4 \pi} \int_{0}^{2 \pi} d \theta \int_{0}^{1}\left(r-r^{3}\right) d r=\frac{3}{4 \pi}(2 \pi)\left[\frac{1}{2} r^{2}-\frac{1}{4} r^{4}\right]_{0}^{1}=\frac{3}{2}\left(\frac{1}{4}\right)=\frac{3}{8}
\end{aligned}
$$

