
Section 15.6 Triple Integrals

10. (a) Express the triple integral
∫∫∫

E
f(x, y, z) dV as an iterated integral for the given function f and solid region E.

(b) Evaluate the iterated integral.
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Because of the symmetry of E and � about the xz-plane, we can immediately say that 
Mxz − 0 and therefore y − 0. The other moments are

 Myz − y y
E

y x� dV − y1

21
 y1

y2
 y x

0
 x� dz dx dy

 − � y1

21
 y1

y2
 x 2 dx dy − � y1

21
 F x 3

3 Gx−y2

x−1
 
dy

 −
2�

3
 y1

0
 s1 2 y 6 d dy −

2�

3
 Fy 2

y 7

7 G0

1

−
4�

7

 Mxy − y y
E

y z� dV − y1

21
 y1

y2
 y x

0
 z� dz dx dy

 − � y1

21
 y1

y2

 F z2

2 Gz−0

z−x

 dx dy −
�

2
 y1

21
 y1

y2

 x 2 dx dy

 −
�

3
 y1

0
 s1 2 y 6 d dy −

2�

7

Therefore the center of mass is

 s x, y, z d − SMyz

m
, 

Mxz

m
, 

Mxy

m D − (5
7 , 0, 5

14 ) ■

15.6 Exercises

 1.  Evaluate the integral in Example 1, integrating first with 
respect to y, then z, and then x.

 2. Evaluate the integral yyy E sxy 1 z 2d dV, where

E − 5sx, y, zd | 0 < x < 2, 0 < y < 1, 0 < z < 36
using three different orders of integration.

3–8 Evaluate the iterated integral.

 3. y2

0
 yz2

0
 yy2z

0
 s2x 2 yd dx dy dz

 4. y1

0
y2y

y
yx1y

0
 6xy dz dx dy

 5. y2

1
 y2z

0
 y ln x

0
 xe2y dy dx dz

 6. y�y2

0
y2x

0
yx1z

0
 cossx 2 2y 1 zd dy dz dx

 7. y3

1
y2

21
yz

2y
 
z

y
 dx dz dy 8. y1

0
 y1

0
 y22x22y2

0
 xye z dz dy dx

9–12 
(a) Express the triple integral yyyE  f sx, y, zd dV as an iterated 

integral for the given function f  and solid region E. 
(b) Evaluate the iterated integral. 

 9. f sx, y, zd − x 10. f sx, y, zd − xy

 z

yx
E

z=1-≈ y+z=2

E0

y=x
z=4-¥

z

y
x
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Solution:

SECTION 15.6 TRIPLE INTEGRALS ¤ 1543

9. (a) The solid region  can be described as  = {(  ) | −1 ≤  ≤ 1, 0 ≤  ≤ 2− , 0 ≤  ≤ 1− 2}.

Thus,



 =

 1
−1
 1−2
0

 2−
0

  .

(b)
 1

−1

 1−2

0

 2−

0

  =

 1

−1

 1−2

0




=2−
=0

  =

 1

−1

 1−2

0

(2− )  

=

 1

−1


2 − 

2

2

=1−2
=0

 =

 1

−1


3

2
− 

3 − 5

2




=


32

4
− 4

4
− 6

12

1
−1
= 0

10. (a) The solid region  can be described as  = {(  ) | 0 ≤  ≤ , 0 ≤  ≤ 2, 0 ≤  ≤ 4− 2}.

Thus,



  =

 2
0

 
0

 4−2
0

  .

(b)
 2
0

 
0

 4−2
0

   =
 2
0

 
0
 []=4−

2

=0  =
 2
0

 
0
(4− 2)  =

 2
0

 
0
(4 − 3) 

=
 2
0
(4 − 3)


2

2

=
=0

 = 1
2

 2
0
(43 − 5)  = 1

2


4 − 6

6

2
0
= 8

3

11. (a) The solid region  can be described as  = {(  ) | 0 ≤  ≤ 2, 0 ≤  ≤ 2, 0 ≤  ≤ 2− }.

Thus,



(+ )  =

 2
0

 2−
0

 2
0
(+ )   .

(b)
 2

0

 2−

0

 2

0

(+ )   =

 2

0

 2−

0


 +

2

2

=2
=0

  =

 2

0

 2−

0



3 +

4

2


 

=

 2

0



3 +

4

2



=2−
=0

 =

 2

0


23 − 5

2


 =


4

2
− 6

12

2
0

=
8

3

12. (a) The solid region  can be described as  = {(  ) |  − 4 ≤  ≤ 4− , −2 ≤  ≤ 2, 0 ≤  ≤ 4− 2}.

Thus,



2  =

 2
−2
 4−2
0

 4−
−4 2  .

(b)
 2
−2
 4−2
0

 4−
−4 2   =

 2
−2
 4−2
0

2


=4−
=−4

  = 2
 2
−2
 4−2
0

(8− 2)  

= 2
 2
−2


8 − 2

=4−2
=0

 = 2
 2
−2(16− 4)  = 2


16 − 5

5

2
−2
= 512

5

13.



  =

 3
0

 
0

 +
−     =

 3
0

 
0



=+
=−   =

 3
0

 
0
22  

=
 3
0


2
3
3
=
=0

 =
 3
0
2
3
3  = 1

6
4
3
0
= 81

6
= 27

2

14.



  =

 1
0

 1


 
0

   =
 1
0

 1





=
=0



=
 1
0

 1

( − )  =

 1
0


 − 

=1
=

 =
 1
0


 −  −  + 2




=

1
2
2 − 1

2
2 − ( − 1) + 1

3
3
1
0

[integrate by parts]

= 1
2
− 1

2
+ 1

3
− 1 = 1

2
− 7

6
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26. Use a triple integral to find the volume of the given solid. The solid enclosed by the cylinder x2 + z2 = 4 and the

planes y = −1 and y + z = 4.

Solution:
572 ¤ CHAPTER 15 MULTIPLE INTEGRALS

22. Here  =

(  ) | −1 ≤  ≤ 4−  2 + 2 ≤ 4


, so

 =

 2

−2

 √4−2

−
√

4−2

 4−

−1

   =

 2

−2

 √4−2

−
√

4−2
(4−  + 1)  

=

 2

−2


5 − 1

2

2
=√4−2

=−
√

4−2
 =

 2

−2

10


4− 2 

= 10


2

√
4− 2 + 2 sin−1



2

2
−2


using trigonometric substitution or
Formula 30 in the Table of Integrals


= 10


2 sin−1(1)− 2 sin−1(−1)


= 20



2
− −

2


= 20

Alternatively, use polar coordinates to evaluate the double integral:

 2

−2

 √4−2

−
√

4−2
(5− )  =

 2

0

 2

0

(5−  sin )   

=
 2

0


5
2
2 − 1

3
3 sin 

=2

=0


=
 2

0


10− 8

3
sin 




= 10 + 8
3

cos 
2
0

= 20

23. (a) The wedge can be described as the region

 =

(  ) | 2 + 2 ≤ 1, 0 ≤  ≤ 1, 0 ≤  ≤ 


=

(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ , 0 ≤  ≤


1− 2


So the integral expressing the volume of the wedge is


 =

 1

0

 
0

√1− 2

0
  .

(b) A CAS gives
 1

0

 
0

√1− 2

0
   = 

4
− 1

3
.

(Or use Formulas 30 and 87 from the Table of Integrals.)

24. (a) Divide  into 8 cubes of size∆ = 8. With (  ) =

2 + 2 + 2, the Midpoint Rule gives





2 + 2 + 2  ≈

2
=1

2
= 1

2
=1



   


∆

= 8[(1 1 1) + (1 1 3) + (1 3 1) + (1 3 3) + (3 1 1)

+ (3 1 3) + (3 3 1) + (3 3 3)]

≈ 23964

(b) Using a CAS we have





2 + 2 + 2  =

 4

0

 4

0

 4

0


2 + 2 + 2    ≈ 24591. This differs from the

estimate in part (a) by about 2.5%.
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38. The figure shows the region of integration for the integral∫ 1

0

∫ 1−x2

0

∫ 1−x

0

f(x, y, z)dydzdx

Rewrite this integral as an equivalent iterated integral in the five other orders.

1
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29–32 Express the integral yyyE f sx, y, zd dV as an iterated 
integral in six different ways, where E is the solid bounded by 
the given surfaces.

 29. y − 4 2 x 2 2 4z2,  y − 0

 30. y 2 1 z2 − 9,  x − 22,  x − 2

 31. y − x 2,  z − 0,  y 1 2z − 4

 32. x − 2,  y − 2,  z − 0,  x 1 y 2 2z − 2

 33. The figure shows the region of integration for the integral

y1

0
 y1

sx 
 y12y

0
 f sx, y, zd dz dy dx

   Rewrite this integral as an equivalent iterated integral in the 
five other orders.

0 

z 

1 

x 

1 y 

z=1-y 

y=œ„x

 34�. The figure shows the region of integration for the integral

y1

0
 y12x2

0
 y12x

0
 f sx, y, zd dy dz dx

   Rewrite this integral as an equivalent iterated integral in the 
five other orders.

1 

1 

1 
z=1-≈ 

y=1-x 

0 
y 

x 

z 

35�–36� Write five other iterated integrals that are equal to the 
given iterated integral.

 35�. y1

0
 y1

y
 yy

0
 f sx, y, zd dz dx dy

 36�. y1

0
 y1

y
 yz

0
 f sx, y, zd dx dz dy

 16�.  yyyT xz dV, where T is the solid tetrahedron with vertices 
s0, 0, 0d, s1, 0, 1d, s0, 1, 1d, and s0, 0, 1d

 17.  yyyE x dV, where E is bounded by the paraboloid  
x − 4y2 1 4z2 and the plane x − 4

 18.  yyyE z dV, where E is bounded by the cylinder y 2 1 z2 − 9  
and the planes x − 0, y − 3x, and z − 0 in the first octant

19–22 Use a triple integral to find the volume of the given solid.

 19.  The tetrahedron enclosed by the coordinate planes and the 
plane 2x 1 y 1 z − 4

 20.  The solid enclosed by the paraboloids y − x 2 1 z 2 and 
y − 8 2 x 2 2 z 2

 21.  The solid enclosed by the cylinder y − x 2 and the planes 
z − 0 and y 1 z − 1

 22.  The solid enclosed by the cylinder x 2 1 z 2 − 4 and the 
planes y − 21 and y 1 z − 4

 23. (a)  Express the volume of the wedge in the first octant 
that is cut from the cylinder y 2 1 z2 − 1 by the planes 
y − x and x − 1 as a triple integral.

 (b)  Use either the Table of Integrals (on Reference Pages  
6–10) or a computer algebra system to find the exact 
value of the triple integral in part (a).

 24�. (a)  In the Midpoint Rule for triple integrals we use a 
triple Riemann sum to approximate a triple integral 
over a box B, where f sx, y, zd is evaluated at the center 
sxi, yj, zk d of the box Bijk. Use the Midpoint Rule to 

    estimate yyyB sx 2 1 y 2 1 z 2   dV, where B is the cube 
defined by 0 < x < 4, 0 < y < 4, 0 < z < 4. Divide 
B into eight cubes of equal size.

 (b)  Use a computer algebra system to approximate the  
integral in part (a) correct to the nearest integer. Com-
pare with the answer to part (a).

25�–26� Use the Midpoint Rule for triple integrals (Exer cise 24) 
to estimate the value of the integral. Divide B into eight sub-
boxes of equal size.

 25�.  yyyB cossxyzd dV, where 

  B − hsx, y, zd | 0 < x < 1, 0 < y < 1, 0 < z < 1j

 26�.  yyyB sx e xyz dV, where 

  B − hsx, y, zd | 0 < x < 4, 0 < y < 1, 0 < z < 2j

27–28 Sketch the solid whose volume is given by the iterated  
integral.

 27. y1

0
 y12x

0
 y222z

0
 dy dz dx 28. y2

0
 y22y

0
 y42y2

0
 dx dz dy

CAS

CAS
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Solution:

SECTION 15.6 TRIPLE INTEGRALS ¤ 577

Then



(  )  =

 2

0

 2

2−
 (+−2)2

0
(  )    =

 2

0

 2

2−
 (+−2)2

0
(  )   

=
 2

0

 2
0

 2

2−+2
(  )    =

 1

0

 2

2

 2

2−+2
(  )   

=
 2

0

 2
0

 2

2−+2
(  )    =

 1

0

 2

2

 2

2−+2
(  )   

33.

The diagrams show the projections

of  onto the -, -, and -planes.

Therefore

 1

0

 1√


 1− 

0
(  )   =

 1

0

 2
0

 1−
0

(  )   =
 1

0

 1−
0

 2
0

(  )   

=
 1

0

 1−
0

 2
0

(  )   =
 1

0

 1−√
0

 1−√


(  )   

=
 1

0

 (1−)2
0

 1−√


(  )   

34.

The projections of  onto the

- and -planes are as in the

first two diagrams and so

 1

0

 1−2
0

 1−

0
(  )   =

 1

0

√1−
0

 1−
0

(  )   

=
 1

0

 1−
0

 1−2
0

(  )    =
 1

0

 1−
0

 1−2
0

(  )   

Now the surface  = 1− 2 intersects the plane  = 1−  in a curve whose projection in the -plane is  = 1− (1− )2

or  = 2 − 2. So we must split up the projection of  on the -plane into two regions as in the third diagram. For ( )

in 1, 0 ≤  ≤ 1−  and for ( ) in 2, 0 ≤  ≤ √1− , and so the given integral is also equal to 1

0

 1−√1−
0

√1−
0

(  )   +
 1

0

 1

1−√1−
 1−
0

(  )   

=
 1

0

 2−2
0

 1−
0

(  )    +
 1

0

 1

2−2
√1−
0

(  )   

35.

 1

0

 1



 
0
(  )    =



(  )  where  = {(  ) | 0 ≤  ≤ ,  ≤  ≤ 1, 0 ≤  ≤ 1}.

[continued]
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42. Evaluate the triple integral using only geometric interpretation and symmetry.∫∫∫
B

(z3 + sin y + 3)dV , where B is the unit ball x2 + y2 + z2 ≤ 1.

Solution:

SECTION 15.6 TRIPLE INTEGRALS ¤ 579

37. The region  is the solid bounded by a circular cylinder of radius 2 with axis the -axis for −2 ≤  ≤ 2. We can write

(4 + 522)  =




4  +



522  , but (  ) = 522 is an odd function with

respect to . Since  is symmetrical about the -plane, we have



522  = 0. Thus


(4 + 522)  =




4  = 4 ·  () = 4 · (2)2(4) = 64.

38. We can write



(3 + sin  + 3)  =



3  +




sin   +



3  . But 3 is an odd function with respect

to  and the region  is symmetric about the -plane, so



3  = 0. Similarly, sin  is an odd

function with respect to  and  is symmetric about the -plane, so



sin   = 0. Thus


(3 + sin  + 3)  =




3  = 3 ·  () = 3 · 4
3
(1)3 = 4.

39. The projection of  onto the -plane is the disk =

( ) | 2 + 2 ≤ 1


.

 =



(  )  =




 1−2−2
0

3 

 =




3(1− 2 − 2) 

= 3
 1

0

 2

0
(1− 2)    = 3

 2

0

 1

0
( − 3) 

= 3


2
0


1
2
2 − 1

4
4
1
0

= 3 (2)


1
2
− 1

4


= 3

2


 =



(  )  =




 1−2−2
0

3

 =




3(1− 2 − 2) 

= 3
 1

0

 2

0
( cos )(1− 2)    = 3

 2

0
cos  

 1

0
(2 − 4) 

= 3

sin 

2
0


1
3
3 − 1

5
5
1
0

= 3 (0)


1
3
− 1

5


= 0

 =



(  )  =




 1−2−2
0

3 

 =




3(1− 2 − 2) 

= 3
 1

0

 2

0
( sin )(1− 2)    = 3

 2

0
sin  

 1

0
(2 − 4) 

= 3
− cos 

2
0


1
3
3 − 1

5
5
1
0

= 3 (0)


1
3
− 1

5


= 0

 =



(  )  =




 1−2−2
0

3 

 =





3
2
2
=1−2−2
=0



= 3
2




(1− 2 − 2)2  = 3
2

 1

0

 2

0
(1− 2)2   

= 3
2

 2

0

 1

0
( − 23 + 5)  = 3

2



2
0


1
2
2 − 1

2
4 + 1

6
6
1
0

= 3
2

(2)


1
2
− 1

2
+ 1

6


= 1

2


Thus the mass is 3
2
 and the center of mass is (  ) =















=


0 0

1

3


.

40.  =
 1

−1

 1−2
0

 1−
0

4   = 4
 1

−1

 1−2
0

(1− )   = 4
 1

−1


 − 1

2
2
=1−2
=0

 = 2
 1

−1
(1− 4)  = 16

5
,

 =
 1

−1

 1−2
0

 1−
0

4  = 2
 1

−1

 1−2
0

(1− )2   = 2
 1

−1

− 1
3
(1− )3

=1−2
=0



= 2
3

 1

−1


1− 6


 =


4
3


6
7


= 24

21

[continued]
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58. Average Value The average value of a function f(x, y, z) over a solid region E is defined to be

favg =
1

V (E)

∫∫∫
E

f(x, y, z)dV

where V (E) is the volume of E. For instance, if ρ is a density function, then ρave is the average density of E.

Find the average height of the points in the solid hemisphere x2 + y2 + z2 ≤ 1, z ≥ 0.

Solution:

2



SECTION 15.6 TRIPLE INTEGRALS ¤ 583

(c)  ( ≤ 1  ≤ 1  ≤ 1) =
 1

−∞
 1

−∞
 1

−∞ (  )    =
 1

0

 1

0

 1

0

1
100

−(05+02+01)   

= 1
100

 1

0
−05 

 1

0
−02 

 1

0
−01 

= 1
100

−2−05
1
0

−5−02
1
0

−10−01
1
0

= (1− −05)(1− −02)(1− −01) ≈ 0006787

53.  () = 3 ⇒ ave =
1

3

 

0

 

0

 

0

   =
1

3

 

0



 

0

 

 

0

 

=
1

3


2

2


0


2

2


0


2

2


0

=
1

3

2

2

2

2

2

2
=

3

8

54. The height of each point is given by its -coordinate, so the average height of the points in

 =

(  ) | 2 + 2 + 2 ≤ 1  ≥ 0


is

1

 ()




 

Here  () = 1
2
· 4

3
(1)3 = 2

3
 [half the volume of a sphere], so

1
 ()



  = 1

23

 1

−1

√1−2

−
√

1−2
√1−2−2
0

    = 3
2

 1

−1

√1−2

−
√

1−2


1
2
2
=√1−2−2
=0

 

= 3
2
· 1

2

 1

−1

√1−2

−
√

1−2
(1− 2 − 2)   = 3

4

 2

0

 1

0
(1− 2)   

= 3
4

 2

0

 1

0
( − 3)  = 3

4
(2)


1
2
2 − 1

4
4
1
0

= 3
2


1
4


= 3

8

55. (a) The triple integral will attain its maximum when the integrand 1− 2 − 22 − 32 is positive in the region  and negative

everywhere else. For if  contains some region  where the integrand is negative, the integral could be increased by

excluding  from , and if  fails to contain some part  of the region where the integrand is positive, the integral could

be increased by including in . So we require that 2 + 22 + 32 ≤ 1. This describes the region bounded by the

ellipsoid 2 + 22 + 32 = 1.

(b) The maximum value of



(1− 2 − 22 − 32)  occurs when  is the solid region bounded by the ellipsoid

2 + 22 + 32 = 1. The projection of  on the -plane is the planar region bounded by the ellipse 2 + 22 = 1, so

=

(  ) | −1 ≤  ≤ 1−


1
2
(1− 2) ≤  ≤


1
2
(1− 2)−


1
3
(1− 2 − 22) ≤  ≤


1
3
(1− 2 − 22)


and



(1− 
2 − 2

2 − 3
2
)  =

 1

−1

 
1
2 (1−2)

−


1
2 (1−2)

 
1
3 (1−2−22)

−


1
3 (1−2−22)

(1− 
2 − 2

2 − 3
2
)    =

4
√

6

45


using a CAS.
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