Section 15.4 Applications of Double Integrals

8. Find the mass and center of mass of the lamina that occupies the region D and has the given density function p.

D is the triangular region enclosed by the lines y = 0, y = 2z, and = + 2y = 1; p(z,y) =

Solution:
Here D = {(z,y) |0 <y < 2, y/2<a<1-2y}.
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Hence m = 3£, (Z,7) = ( 3735 2/25) =(8.%)

13. A lamina occupies the part of the disk z2 + % < 1 in the first quadrant. Find its center of mass if the density at
any point is proportional to its distance from the z-axis.

Solution:
m = [[, kydA = fﬁ/2fo (rsin® rdrd@-kfﬁpsmﬁdé? f01r2dr
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Hence (7,7) = (45,5532 = (2. %5).
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18. A lamina occupies the region inside the circle 22 4+ y? = 2y but outside the circle 22 + y?> = 1. Find the center of

mass if the density at any point is inversely proportional to its distance from the origin.

Solution:

p(z,y) = k/\/a? +y* = k/r. :
r=2sin 6
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By symmetry of D and f(z) = x, M, = 0, and \/ '
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:§k[ 3cos0+—cos 0]5”/6 V3k

Hence (Z,7) = (O7 2(3%3/3“))



