Section 15.3 Double Integrals in Polar Coordinates

13. Evaluate the given integral by changing to polar coordinates.
$\iint_{D} e^{-x^{2}-y^{2}} d A$, where D is the region bounded by the semicircle $x=\sqrt{4-y^{2}}$ and the y-axis.

Solution:

$$
\begin{aligned}
\iint_{D} e^{-x^{2}-y^{2}} d A & =\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2} e^{-r^{2}} r d r d \theta=\int_{-\pi / 2}^{\pi / 2} d \theta \int_{0}^{2} r e^{-r^{2}} d r \\
& =[\theta]_{-\pi / 2}^{\pi / 2}\left[-\frac{1}{2} e^{-r^{2}}\right]_{0}^{2}=\pi\left(-\frac{1}{2}\right)\left(e^{-4}-e^{0}\right)=\frac{\pi}{2}\left(1-e^{-4}\right)
\end{aligned}
$$

16. Evaluate the given integral by changing to polar coordinates.
$\iint_{D} x d A$, where D is the region in the first quadrant that lies between the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=2 x$.

Solution:

$$
\begin{aligned}
\iint_{D} x d A & =\iint_{\substack{x^{2}+y^{2} \leq 4 \\
x \geq 0, y \geq 0}} x d A-\int_{\substack{(x-1)^{2}+y^{2} \leq 1 \\
y \geq 0}} x d A \\
& =\int_{0}^{\pi / 2} \int_{0}^{2} r^{2} \cos \theta d r d \theta-\int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} r^{2} \cos \theta d r d \theta \\
& =\int_{0}^{\pi / 2} \frac{1}{3}(8 \cos \theta) d \theta-\int_{0}^{\pi / 2} \frac{1}{3}\left(8 \cos ^{4} \theta\right) d \theta \\
& =\frac{8}{3}[\sin \theta]_{0}^{\pi / 2}-\frac{8}{12}\left[\cos ^{3} \theta \sin \theta+\frac{3}{2}(\theta+\sin \theta \cos \theta)\right]_{0}^{\pi / 2} \\
& =\frac{8}{3}-\frac{2}{3}\left[0+\frac{3}{2}\left(\frac{\pi}{2}\right)\right]=\frac{16-3 \pi}{6}
\end{aligned}
$$

20. Use a double integral to find the area of the region D.

Solution:

By symmetry, the area of the region is 4 times the area of the region D in the first quadrant between the circle $r=1 / \sqrt{2}$ and the curve $r^{2}=\cos 2 \theta \Rightarrow r=\sqrt{\cos 2 \theta}$. The curves intersect in the first quadrant when $\cos 2 \theta=\left(\frac{1}{\sqrt{2}}\right)^{2} \Rightarrow$ $\cos 2 \theta=\frac{1}{2} \Rightarrow 2 \theta=\frac{\pi}{3} \Rightarrow \theta=\frac{\pi}{6}$. Thus, $D=\{(r, \theta) \mid 1 / \sqrt{2} \leq r \leq \sqrt{\cos 2 \theta}, 0 \leq \theta \leq \pi / 6\}$, so the total area is

$$
\begin{aligned}
4 A(D) & =4 \int_{0}^{\pi / 6} \int_{1 / \sqrt{2}}^{\sqrt{\cos 2 \theta}} r d r d \theta=4 \cdot \frac{1}{2} \int_{0}^{\pi / 6}\left[r^{2}\right]_{r=1 / \sqrt{2}}^{r=\sqrt{\cos 2 \theta}} d \theta=2 \int_{0}^{\pi / 6}\left[\cos 2 \theta-\frac{1}{2}\right] d \theta \\
& =2\left[\frac{1}{2} \sin 2 \theta-\frac{\theta}{2}\right]_{0}^{\pi / 6}=\frac{\sqrt{3}}{2}-\frac{\pi}{6}
\end{aligned}
$$

32. Use polar coordinates to find the volume of the given solid.

Inside the sphere $x^{2}+y^{2}+z^{2}=16$ and outside the cylinder $x^{2}+y^{2}=4$.

Solution:

The sphere $x^{2}+y^{2}+z^{2}=16$ intersects the $x y$-plane in the circle $x^{2}+y^{2}=16$, so

$$
\begin{aligned}
V & =2 \iint_{4 \leq x^{2}+y^{2} \leq 16} \sqrt{16-x^{2}-y^{2}} d A \quad[\text { by symmetry }]=2 \int_{0}^{2 \pi} \int_{2}^{4} \sqrt{16-r^{2}} r d r d \theta \\
& =2 \int_{0}^{2 \pi} d \theta \int_{2}^{4} r\left(16-r^{2}\right)^{1 / 2} d r=2[\theta]_{0}^{2 \pi}\left[-\frac{1}{3}\left(16-r^{2}\right)^{3 / 2}\right]_{2}^{4} \\
& =-\frac{2}{3}(2 \pi)\left(0-12^{3 / 2}\right)=\frac{4 \pi}{3}(12 \sqrt{12})=32 \sqrt{3} \pi
\end{aligned}
$$

41. Evaluate the iterated integral by converting to polar coordinates. $\int_{0}^{\frac{1}{2}} \int_{\sqrt{3} y}^{\sqrt{1-y^{2}}} x y^{2} d x d y$

Solution:

The region D of integration is shown in the figure. In polar coordinates the line $x=\sqrt{3} y$ is $\theta=\pi / 6$, so

$$
\begin{aligned}
& \int_{0}^{1 / 2} \int_{\sqrt{3} y}^{\sqrt{1-y^{2}}} x y^{2} d x d y=\int_{0}^{\pi / 6} \int_{0}^{1}(r \cos \theta)(r \sin \theta)^{2} r d r d \theta \\
& =\int_{0}^{\pi / 6} \sin ^{2} \theta \cos \theta d \theta \int_{0}^{1} r^{4} d r \\
& =\left[\frac{1}{3} \sin ^{3} \theta\right]_{0}^{\pi / 6}\left[\frac{1}{5} r^{5}\right]_{0}^{1} \\
& =\left[\frac{1}{3}\left(\frac{1}{2}\right)^{3}-0\right]\left[\frac{1}{5}-0\right]=\frac{1}{120}
\end{aligned}
$$

