Section 15.2 Double Integrals over General Regions

9. (a) Express the double integral $\iint_{D} f(x, y) d A$ as an iterated integral for the given function f and region D.
(b) Evaluate the iterated integral.

Solution:

(a) We express the iterated integral as a Type II. A Type I would require the sum of two integrals. The curves intersect when $\sqrt{x}=x-2 \quad \Rightarrow \quad x=x^{2}-4 x+4 \quad \Leftrightarrow \quad 0=x^{2}-5 x+4 \quad \Leftrightarrow \quad(x-4)(x-1)=0 \quad \Leftrightarrow \quad x=1$ or $x=4$. The point for $x=1$ is not in D. Thus, the point of intersection of the curves is $(4,2)$ and the integral is $\int_{0}^{2} \int_{y^{2}}^{y+2} x y d x d y$.
(b) $\int_{0}^{2} \int_{y^{2}}^{y+2} x y d x d y=\int_{0}^{2} y\left[\frac{x^{2}}{2}\right]_{x=y^{2}}^{x=y+2} d y=\frac{1}{2} \int_{0}^{2} y\left[(y+2)^{2}-\left(y^{2}\right)^{2}\right] d y=\frac{1}{2} \int_{0}^{2}\left[y^{3}+4 y^{2}+4 y-y^{5}\right] d y$

$$
=\frac{1}{2}\left[\frac{1}{4} y^{4}+\frac{4}{3} y^{3}+2 y^{2}-\frac{1}{6} y^{6}\right]_{0}^{2}=\frac{1}{2}\left(4+\frac{32}{3}+8-\frac{32}{3}\right)=6
$$

21. Set up iterated integrals for both orders of integration. Then evaluate the double integral using the easier order and explain why it's easier.

$$
\iint_{D} \sin ^{2} x d A, D \text { is bounded by } y=\cos x, 0 \leq x \leq \frac{\pi}{2}, y=0, x=0
$$

Solution:

If we describe D as a type I region, $D=\{(x, y) \mid 0 \leq x \leq \pi / 2,0 \leq y \leq \cos x\}$
and $\iint_{D} \sin ^{2} x d A=\int_{0}^{\pi / 2} \int_{0}^{\cos x} \sin ^{2} x d y d x$. As a type II region,
$D=\left\{(x, y) \mid 0 \leq x \leq \cos ^{-1} y, 0 \leq y \leq 1\right\}$ and
$\iint_{D} \sin ^{2} x d A=\int_{0}^{1} \int_{0}^{\cos ^{-1} y} \sin ^{2} x d x d y$. Evaluating $\int_{0}^{\cos ^{-1} y} \sin ^{2} x d x$ will result in a very difficult integral. Therefore, we evaluate the iterated integral that describes D as a type I region because integrating $\sin ^{2} x$ with respect to y is easy.

$$
\begin{aligned}
\int_{0}^{\pi / 2} \int_{0}^{\cos x} \sin ^{2} x d y d x & =\int_{0}^{\pi / 2} \sin ^{2} x[y]_{y=0}^{y=\cos x} d x=\int_{0}^{\pi / 2} \cos x \sin ^{2} x d x \\
& =\int_{0}^{1} u^{2} d u\left[\begin{array}{c}
u=\sin x, \\
d u=\cos x d x
\end{array}\right]=\left[\frac{u^{3}}{3}\right]_{0}^{1}=\frac{1}{3}
\end{aligned}
$$

22. Set up iterated integrals for both orders of integration. Then evaluate the double integral using the easier order and explain why it's easier.

$$
\iint_{D} 6 x^{2} d A, D \text { is bounded by } y=x^{3}, y=2 x+4, x=0
$$

Solution:

By inspection, the curves $y=2 x+4$ and $y=x^{3}$ intersect when $x^{3}=2 x+4 \Leftrightarrow$ $x=2$, so the point of intersection is $(2,8)$. If we describe D as a type 1 region, $D=\left\{(x, y) \mid 0 \leq x \leq 2, x^{3} \leq y \leq 2 x+4\right\}$ and the integral is $\iint_{D} 6 x^{2} d A=\int_{0}^{2} \int_{x^{3}}^{2 x+4} 6 x^{2} d y d x$

If we describe D as a type II region, the right boundary curve is $x=\sqrt[3]{y}$, but the left boundary curve consists of two parts, $x=0$ for $0 \leq y \leq 4$ and $x=y / 2-2$ for $4 \leq y \leq 8$.

In either case, the resulting iterated integrals are not difficult to evaluate, but the region D is more simply described as a type I region, giving one iterated integral rather than a sum of two, so we evaluate that integral:

$$
\begin{aligned}
\int_{0}^{2} \int_{x^{3}}^{2 x+4} 6 x^{2} d y d x & =\int_{0}^{2}\left[6 x^{2} y\right]_{y=x^{3}}^{y=2 x+4} d x=\int_{0}^{2}\left[6 x^{2}\left(2 x+4-x^{3}\right)\right] d x=\int_{0}^{2}\left(12 x^{3}+24 x^{2}-6 x^{5}\right) d x \\
& =\left[3 x^{4}+8 x^{3}-x^{6}\right]_{0}^{2}=48+64-64=48
\end{aligned}
$$

25. Evaluate the double integral.

$$
\iint_{D} y^{2} d A, D \text { is the triangular region with vertices }(0,1),(1,2),(4,1)
$$

Solution:

$$
\begin{aligned}
\iint_{D} y^{2} d A & =\int_{1}^{2} \int_{y-1}^{7-3 y} y^{2} d x d y=\int_{1}^{2}\left[x y^{2}\right]_{x=y-1}^{x=7-3 y} d y \\
& =\int_{1}^{2}[(7-3 y)-(y-1)] y^{2} d y=\int_{1}^{2}\left(8 y^{2}-4 y^{3}\right) d y \\
& =\left[\frac{8}{3} y^{3}-y^{4}\right]_{1}^{2}=\frac{64}{3}-16-\frac{8}{3}+1=\frac{11}{3}
\end{aligned}
$$

28. Evaluate the double integral $\iint_{D} y d A, D$ is the triangular region with vertices $(0,0),(1,1)$, and $(4,0)$.

Solution:

$$
\begin{aligned}
\iint_{D} y d A & =\int_{0}^{1} \int_{y}^{4-3 y} y d x d y \\
& =\int_{0}^{1}[x y]_{x=y}^{x=4-3 y} d y=\int_{0}^{1}\left(4 y-3 y^{2}-y^{2}\right) d y \\
& =\int_{0}^{1}\left(4 y-4 y^{2}\right) d y=\left[2 y^{2}-\frac{4}{3} y^{3}\right]_{0}^{1}=2-\frac{4}{3}-0=\frac{2}{3}
\end{aligned}
$$

62. Evaluate the integral $\int_{0}^{1} \int_{x^{2}}^{1} \sqrt{y} \sin y d y d x$ by reversing the order of integration.

Solution:

$$
\begin{aligned}
\int_{0}^{1} \int_{x^{2}}^{1} \sqrt{y} \sin y d y d x & =\int_{0}^{1} \int_{0}^{\sqrt{y}} \sqrt{y} \sin y d x d y=\int_{0}^{1} \sqrt{y} \sin y[x]_{x=0}^{x=\sqrt{y}} d y \\
& =\int_{0}^{1}(\sqrt{y} \sin y)(\sqrt{y}-0) d y=\int_{0}^{1} y \sin y d y \\
& =-y \cos y]_{0}^{1}+\int_{0}^{1} \cos y d y
\end{aligned}
$$

[by integrating by parts with $u=y, d v=\sin y d y$] $=[-y \cos y+\sin y]_{0}^{1}=-\cos 1+\sin 1-0=\sin 1-\cos 1$
64. Evaluate the integral by reversing the order of integration. $\int_{0}^{2} \int_{y / 2}^{1} y \cos \left(x^{3}-1\right) d x d y$

Solution:

$$
\begin{aligned}
\int_{0}^{2} \int_{y / 2}^{1} y \cos \left(x^{3}-1\right) d x d y & =\int_{0}^{1} \int_{0}^{2 x} y \cos \left(x^{3}-1\right) d y d x \\
& =\int_{0}^{1} \cos \left(x^{3}-1\right)\left[\frac{1}{2} y^{2}\right]_{y=0}^{y=2 x} d x \\
& \left.=\int_{0}^{1} 2 x^{2} \cos \left(x^{3}-1\right) d x=\frac{2}{3} \sin \left(x^{3}-1\right)\right]_{0}^{1} \\
& =\frac{2}{3}[0-\sin (-1)]=-\frac{2}{3} \sin (-1)=\frac{2}{3} \sin 1
\end{aligned}
$$

68. Express D as a union of regions of type I or type II and evaluate the integral $\iint_{D} y d A$.

Solution:

$$
\begin{aligned}
D=\{(x, y) \mid-1 \leq & \left.y \leq 0,-1 \leq x \leq y-y^{3}\right\} \cup\left\{(x, y) \mid 0 \leq y \leq 1, \sqrt{y}-1 \leq x \leq y-y^{3}\right\}, \text { both type II. } \\
\iint_{D} y d A & =\int_{-1}^{0} \int_{-1}^{y-y^{3}} y d x d y+\int_{0}^{1} \int_{\sqrt{y}-1}^{y-y^{3}} y d x d y=\int_{-1}^{0}[x y]_{x=-1}^{x=y-y^{3}} d y+\int_{0}^{1}[x y]_{x=\sqrt{y}-1}^{x=y-y^{3}} d y \\
& =\int_{-1}^{0}\left(y^{2}-y^{4}+y\right) d y+\int_{0}^{1}\left(y^{2}-y^{4}-y^{3 / 2}+y\right) d y \\
& =\left[\frac{1}{3} y^{3}-\frac{1}{5} y^{5}+\frac{1}{2} y^{2}\right]_{-1}^{0}+\left[\frac{1}{3} y^{3}-\frac{1}{5} y^{5}-\frac{2}{5} y^{5 / 2}+\frac{1}{2} y^{2}\right]_{0}^{1} \\
& =\left(0-\frac{11}{30}\right)+\left(\frac{7}{30}-0\right)=-\frac{2}{15}
\end{aligned}
$$

