
Section 15.2 Double Integrals over General Regions

9. (a) Express the double integral
∫∫

D
f(x, y)dA as an iterated integral for the given function f and region D.

(b) Evaluate the iterated integral.
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10  If m < f sx, yd < M for all sx, yd in D, then

m � AsDd < y
D

y f sx, yd dA < M � AsDd

Figure 20 illustrates Property 10 for the case m . 0. The volume of the solid below 
the graph of z − f sx, yd and above D is between the volumes of the cylinders with  
base D and heights m and M. (Compare to Figure 5.2.17, which illustrates the analogous 
property for single integrals.)

EXAMPLE 6 Use Property 10 to estimate the integral yyD e sin x cos y dA, where D is the 
disk with center the origin and radius 2.

SOLUTION Since 21 < sin x < 1 and 21 < cos y < 1, we have 
21 < sin x cos y < 1 and, because the natural exponential function is increasing,  
we have

e21 < e sin x cos y < e 1 − e

Thus, using m − e21 − 1ye, M − e, and AsDd − �s2d2 in Property 10, we obtain

 
4�

e
< y

D

y e sin x cos y dA < 4�e  ■

y 

z 

z=M 

z=m 

z=f(x, y) 

x 

D 

FIGURE 20  

15.2 Exercises

1–6 Evaluate the iterated integral.

 1. y5

1
yx

0
 s8x 2 2yd dy dx 2. y2

0
yy2

0
 x 2y dx dy

 3. y1

0
yy

0
 xe y3 

dx dy 4. y�y2

0
yx

0
 x sin y dy dx

 5. y1

0
 ys2

0
 cosss 3d dt ds 6. y1

0
yev

0
  s1 1 ev 

 dw dv

7–10 
(a) Express the double integral yyD  f sx, yd dA as an iterated 

integral for the given function f  and region D.
(b) Evaluate the iterated integral. 

 7. f sx, yd − 2y 8. f sx, yd − x 1 y

  

y=3x-≈

y=x

(2, 2)

y

0 x

D

  

(1, 1)

0

y

x

D

2

 9. f sx, yd − xy 10. f sx, yd − x

  

y

0 x

D

y=œ„x

y=x-2

  0

y

x

D

y=6-x

y=≈

11–14 Evaluate the double integral.

 11. y
D

y 
y

x 2 1 1
 dA, D − hsx, yd  |  0 < x < 4, 0 < y < sx j

 12. y
D

y s2x 1 yd dA, D − hsx, yd  |  1 < y < 2, y 2 1 < x < 1j

 13. y
D

y e2y 2
 dA, D − hsx, yd  |  0 < y < 3, 0 < x < yj

 14. y
D

y ysx 2 2 y 2  dA, D − hsx, yd  |  0 < x < 2, 0 < y < xj

 15. Draw an example of a region that is
 (a)  type I but not type II
 (b) type II but not type I
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Solution:
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To find , we first use Fubini’s Theorem to find that
 


 

( )   =

 


 

( )  , and then use the

Fundamental Theorem twice, as above, to get  = ( ). So  =  = ( ).

15.2 Double Integrals over General Regions

1.
 5
1

 
0
(8− 2)   =

 5
1


8 − 2

=
=0

 =
 5
1
[8()− ()2 − 8(0) + (0)2]

=
 5
1
72  = 7

3
3
5
1
= 7

3
(125− 1) = 868

3

2.
 2
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0

2  =
 2
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3
3

=2
=0

 =
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0
1
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(2)3 − (0)3 

=
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0
1
3

7  = 1
3


1
8

8
2
0
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3 (32− 0) = 32
3

3.
 1
0

 
0


3

 =
 1
0


1
2

2
3
=
=0

 =
 1
0
1
2

3

()2 − (0)2 

= 1
2

 1
0
2

3
 = 1

2


1
3


3
1
0
= 1

2
· 1
3


1 − 0


= 1

6
(− 1)

4.
 2
0

 
0
 sin    =

 2
0

[(− cos )]=
=0  =

 2
0

(− cos+ )  =
 2
0

(−  cos) 

=

1
2

2 − ( sin+ cos)2
0

(by integrating by parts in the second term)

=

1
2
· 2
4
− 

2
− 0

− (0− 0− 1) = 2

8
− 

2
+ 1

5.
 1
0

 2
0
cos(3)   =

 1
0


 cos(3)

=2
=0

 =
 1
0
2 cos(3)  = 1

3
sin(3)

1
0
= 1

3
(sin 1− sin 0) = 1

3
sin 1

6.
 1
0

 
0

√
1 +    =

 1
0



√
1 + 

=
=0

 =
 1
0

√
1 +   = 2

3
(1 + )32

1
0

= 2
3
(1 + )32 − 2

3
(1 + 1)32 = 2

3
(1 + )32 − 4

3

√
2

7. (a) We express the iterated integral as a Type I:
 2

0

 3−2



2  . A Type II would require the sum of two integrals.

(b)
 2

0

 3−2



2  =

 2

0



2
=3−2
=

 =

 2

0


(3− 

2)2 − ()2  =  2

0


82 − 63 + 

4


=

8
3
3 − 3

2
4 + 1

5
5
2
0
= 64

3
− 24 + 32

5
= 56

15

8. (a) We express the iterated integral as a Type II:
 1
0

 2−


(+ ) . A Type I would require the sum of two integrals.

(b)
 1

0

 2−



(+ ) =

 1

0


2

2
+ 

=2−
=

 =

 1

0


(2− )2

2
+ (2− )


−

2

2
+ 

2




=
 1
0
(2− 22)  = 2 − 2

3
3
1
0
= 2− 2

3 =
4
3

9. (a) We express the iterated integral as a Type II. A Type I would require the sum of two integrals. The curves intersect when
√
 = − 2 ⇒  = 2 − 4+ 4 ⇔ 0 = 2 − 5+ 4 ⇔ (− 4)(− 1) = 0 ⇔  = 1 or  = 4. The

point for  = 1 is not in. Thus, the point of intersection of the curves is (4 2) and the integral is
 2
0

 +2
2

 .
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(b)
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 +2

2
  =
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3
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3
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10. (a) We express the iterated integral as a Type I. A Type II would require the sum of two integrals. The curves intersect when

6−  = 2 ⇔ 2 + − 6 = 0 ⇔ (+ 3)(− 2) = 0 ⇔  = −3 or  = 2. The point for  = −3 is not

in. Thus, the point of intersection of the two curves is (2 4) and the integral is
 2

0

 6−

2
 .

(b)
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0
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3
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2
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3
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1
2
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0
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 4
0
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4
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4
ln 17

12.
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 2
1

 1
−1(2+ )  =

 2
1


2 + 

=1
=−1  =

 2
1


1 +  − ( − 1)2 − ( − 1) 

=
 2
1
(−22 + 4)  = − 2

3
3 + 22

2
1
=
− 16

3
+ 8
− − 2

3
+ 2

= 4

3
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−

2
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0

 
0
−

2
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2
=
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0


−
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0
−
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2
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= 1
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=
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1
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15. (a) At the right we sketch an example of a region that can be described as lying

between the graphs of two continuous functions of  (a type I region) but not as

lying between graphs of two continuous functions of  (a type II region). The

regions shown in Figures 6 and 8 in the text are additional examples.

(b) Now we sketch an example of a region that can be described as lying between

the graphs of two continuous functions of  but not as lying between graphs of two

continuous functions of . The first region shown in Figure 7 is another example.
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21. Set up iterated integrals for both orders of integration. Then evaluate the double integral using the easier order

and explain why it’s easier.∫∫
D

sin2 xdA, D is bounded by y = cosx, 0 ≤ x ≤ π

2
, y = 0, x = 0

Solution:
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19. The curves  = − 2 or  =  + 2 and  = 2 intersect when  + 2 = 2 ⇔

2 −  − 2 = 0 ⇔ ( − 2)( + 1) = 0 ⇔  = −1,  = 2, so the points of

intersection are (1−1) and (4 2). If we describe as a type I region, the upper

boundary curve is  =
√
 but the lower boundary curve consists of two parts,

 = −√ for 0 ≤  ≤ 1 and  = − 2 for 1 ≤  ≤ 4.
Thus ,  = {( ) | 0 ≤  ≤ 1, −√ ≤  ≤ √ } ∪ {( ) | 1 ≤  ≤ 4, − 2 ≤  ≤ √ } and


  =

 1
0

√
−√   +

 4
1

√
−2   . If we describe as a type II region, is enclosed by the left boundary

 = 2 and the right boundary  =  + 2 for −1 ≤  ≤ 2, so =

( ) | −1 ≤  ≤ 2, 2 ≤  ≤  + 2


and


  =

 2
−1
 +2
2

 . In either case, the resulting iterated integrals are not difficult to evaluate but the region is

more simply described as a type II region, giving one iterated integral rather than a sum of two, so we evaluate the latter

integral: 

 =

 2
−1
 +2
2

  =
 2
−1


= +2

= 2
 =

 2
−1( + 2− 2)  =

 2
−1(

2 + 2 − 3) 

=

1
3

3 + 2 − 1
4

4
2
−1 =


8
3 + 4− 4

− − 1
3 + 1− 1

4


= 9

4

20. As a type I region, = {( ) | 0 ≤  ≤ 4,  ≤  ≤ 4} and

2  =

 4
0

 4

2  . As a type II region,

 = {( ) | 0 ≤  ≤ 4, 0 ≤  ≤ } and 

2  =

 4
0

 
0
2 .

Evaluating

2  requires integration by parts whereas


2  does not, so

the iterated integral corresponding to as a type II region appears easier to evaluate.

2  =

 4
0

 
0
2  =

 4
0




=
=0

 =
 4
0




2 − 



=

1
2


2 − 1
2
2
4
0
=

1
2
16 − 8−  1

2
− 0 = 1

2
16 − 17

2

21.

D

If we describe as a type I region, = {( ) | 0 ≤  ≤ 2, 0 ≤  ≤ cos}

and



sin2  =

 2
0

 cos 
0

sin2  . As a type II region,

 = {( ) | 0 ≤  ≤ cos−1 , 0 ≤  ≤ 1} and



sin2  =

 1

0

 cos−1 

0

sin2 . Evaluating
 cos−1 

0

sin2  will

result in a very difficult integral. Therefore, we evaluate the iterated integral that

describes as a type I region because integrating sin2  with respect to  is easy. 2

0

 cos

0

sin2  =

 2

0

sin2 


=cos
=0

 =

 2

0

cos sin2 

=

 1

0


2



 = sin

 = cos 


=


3

3

1
0

=
1

3
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and explain why it’s easier. ∫∫
D

6x2 dA, D is bounded by y = x3, y = 2x+ 4, x = 0

Solution:

1
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22. By inspection, the curves  = 2+ 4 and  = 3 intersect when 3 = 2+ 4 ⇔
 = 2, so the point of intersection is (2 8). If we describe as a type 1 region,

 = {( ) | 0 ≤  ≤ 2, 3 ≤  ≤ 2+ 4} and the integral is


62  =

 2

0

 2+4

3
62  .

If we describe as a type II region, the right boundary curve is  = 3

, but the left boundary curve consists of two parts,

 = 0 for 0 ≤  ≤ 4 and  = 2− 2 for 4 ≤  ≤ 8.
In either case, the resulting iterated integrals are not difficult to evaluate, but the region is more simply described as a

type I region, giving one iterated integral rather than a sum of two, so we evaluate that integral: 2

0

 2+4

3
62  =
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0


62

=2+4
=3

 =

 2

0

[62(2+ 4− 
3)]  =

 2

0

(123 + 242 − 65) 

=
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2
0
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23.
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0
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0
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 1
0


 sin 

=2

=0
 =

 1
0
 sin2 

= − 1
2 cos

2
1
0
= − 1

2 (cos 1− cos 0) = 1
2 (1− cos 1)

24.
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 1
0

 
3
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 1
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=
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=
 1
0
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1
4
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3
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6
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7
7
1
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1
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23
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25.
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1

 7−3
−1 2  =

 2
1


2

=7−3
=−1 

=
 2
1
[(7− 3)− ( − 1)] 2  =  2

1
(82 − 43) 

=

8
3
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2
1
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=
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1
2
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4
4
1
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1
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8
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25. Evaluate the double integral.∫∫
D

y2dA, D is the triangular region with vertices (0, 1), (1, 2), (4, 1)

Solution:
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18. 



2
 =
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−1

 √1−2

0


2
 

=
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2
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2
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3
3 − 1

5
5
1
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1
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5
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3
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2  =

 2

1

 7−3

−1
2   =

 2

1


2

=7−3

=−1


=
 2

1
[(7− 3)− ( − 1)] 2  =

 2

1
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=
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2
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3
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0
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=
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1
2
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0
1
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21.  2

−2

 √4−2

−
√

4−2
(2− )  

=
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−2


2 − 1

2

2
=√4−2

=−
√

4−2


=
 2

−2


2
√

4− 2 − 1
2


4− 2


+ 2

√
4− 2 + 1

2


4− 2




=
 2

−2
4
√

4− 2  = − 4
3


4− 2

322
−2

= 0

[Or, note that 4
√

4− 2 is an odd function, so
 2

−2
4
√

4− 2  = 0.]

22.
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 1

0

 4−3
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0
[]

=4−3

=  =
 1

0
(4 − 32 − 2) 

=
 1

0
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3
3
1
0

= 2− 4
3
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3

23.

D

=
 1

0

√
2

(3+ 2)   =
 1

0


3 + 2

=√
=2



=
 1

0


(3
√
+ )− (33 + 4)


 =

 1

0
(332 + − 33 − 4) 

=

3 · 2

5
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2
2 − 3

4
4 − 1

5
5
1
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= 6
5
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− 1
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4
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28. Evaluate the double integral
∫∫

D
y dA, D is the triangular region with vertices (0, 0), (1, 1), and (4, 0).

Solution:
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27.  2

−2

 √4−2

−
√
4−2

(2− )  

=

 2

−2


2 − 1

2

2
=√4−2

=−
√
4−2



=
 2
−2

2
√
4− 2 − 1

2


4− 2


+ 2

√
4− 2 + 1

2


4− 2




=
 2
−2 4

√
4− 2  = − 4

3


4− 2

322
−2
= 0

[Or, note that 4
√
4− 2 is an odd function, so

 2
−2 4

√
4− 2  = 0.]

28.



  =

 1
0

 4−3


 

=
 1
0
[]=4−3

=  =
 1
0
(4 − 32 − 2) 

=
 1
0
(4 − 42)  = 22 − 4

3
3
1
0
= 2− 4

3
− 0 = 2

3

29. (a) As a Type I region, = {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1} and the volume 
of the solid that lies under the surface and above is given by

 =



(1 + )  =

 1
0

 1

(1 + )  . As a Type II region,

 = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ } and  =
 1
0

 
0
(1 + ) .

Evaluate either integral in part (b).

(b)
 1

0

 

0

(1 + )  =

 1

0


+ 

2

2

=
=0

 =

 1

0


 +

3

2


− 0

 =


2

2
+

4

8

1
0

=
1

2
+
1

8
=
5

8

30. (a) As a Type I region, = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ 2} and the volume 
of the solid that lies under the surface and above is given by

 =



(2 + 2)  =

 1
0

 2
0
(2 + 2)  . As a Type II region,

 = {( ) | 0 ≤  ≤ 1,√ ≤  ≤ 1} and  =
 1
0

 1√

(2 + 2) 

(b)
 1

0

 2

0

(2 + 
2)   =

 1

0



2
 +

3

3

=2
=0

 =

 1

0



4 +

6

3


 =


5

5
+

7
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1
0

=
1

5
+
1

21
=
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31.

D
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0

√
2
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=√
=2



=
 1
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√
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0
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=
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5
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2
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4
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5
5
1
0
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5
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2
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62. Evaluate the integral
∫ 1

0

∫ 1

x2

√
y sin y dydx by reversing the order of integration.

Solution:
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58. Because the region of integration is

=

( ) | 0 ≤  ≤4− 2−2 ≤  ≤ 2


=

( ) | −√4− 2 ≤  ≤ √4− 2 0 ≤  ≤ 2

we have 2
−2
√4−2
0

( )  =


( )  =

 2
0

√4−2
−
√
4−2

( )  .

59. Because the region of integration is

 = {( ) | 0 ≤  ≤ ln, 1 ≤  ≤ 2} = {( ) |  ≤  ≤ 2, 0 ≤  ≤ ln 2}
we have 2

1

 ln
0

( )   =



( )  =

 ln 2
0

 2

( ) 

60. Because the region of integration is

 =

( ) | arctan ≤  ≤ 

4
, 0 ≤  ≤ 1

=

( ) | 0 ≤  ≤ tan , 0 ≤  ≤ 

4


we have 1

0

 4
arctan

( )   =



( )  =

 4
0

 tan 
0

( ) 

61.
 1

0

 3

3


2

 =

 3

0

 3

0


2

  =

 3

0



2

=3
=0



=

 3

0


3



2

 = 1
6 

2
3
0
=

9 − 1
6

62.
 1

0

 1

2

√
 sin   =

 1

0

 √


0

√
 sin   =

 1

0

√
 sin  []

=
√


=0 

=
 1
0

√
 sin 

 √
 − 0  =  1

0
 sin  

= − cos ]10 +
 1
0
cos  

[by integrating by parts with  = ,  = sin  ]

= [− cos  + sin ]10 = − cos 1 + sin 1− 0 = sin 1− cos 1

63.
 1

0

 1

√



3 + 1  =

 1

0

 2

0


3 + 1  =

 1

0


3 + 1 []=

2

=0 

=

 1

0


2

3 + 1  = 2

9



3 + 1

321
0

= 2
9


232 − 132


= 2

9


2
√
2− 1
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2



64. Evaluate the integral by reversing the order of integration.
∫ 2

0

∫ 1

y/2
y cos(x3 − 1)dxdy

Solution:

SECTION 15.2 DOUBLE INTEGRALS OVER GENERAL REGIONS ¤ 541

50. Because the region of integration is

 =

( ) | arctan ≤  ≤ 

4
, 0 ≤  ≤ 1


=

( ) | 0 ≤  ≤ tan , 0 ≤  ≤ 

4


we have 1

0

 4

arctan 

( )   =




( )  =

 4

0

 tan 

0

( ) 

51.
 1

0

 3

3


2

  =

 3

0

 3

0


2

  =

 3

0



2

=3
=0



=

 3

0


3



2

 = 1
6

2
3
0

=
9 − 1

6

52.
 1

0

 1

2

√
 sin   =

 1

0

 √


0

√
 sin    =

 1

0

√
 sin  []

=
√


=0 

=

 1

0

(
√
 sin ) (

√
 − 0)  =

 1

0

 sin  

= − cos ]
1

0
+
 1

0
cos  

[by integrating by parts with  = ,  = sin  ]

= [− cos  + sin ]
1

0
= − cos 1 + sin 1− 0 = sin 1− cos 1

53.

 1

0

 1

√



3 + 1  =

 1

0

 2

0


3 + 1  =

 1

0


3 + 1 []

=2

=0 

=

 1

0


2

3 + 1  = 2

9



3
+ 1
321

0

= 2
9


232 − 132


= 2

9


2
√

2− 1


54.
 2

0

 1

2

 cos(
3 − 1)   =

 1

0

 2

0

 cos(
3 − 1)  

=

 1

0

cos(
3 − 1)


1
2

2
=2

=0


=

 1

0

2
2
cos(

3 − 1)  = 2
3

sin(
3 − 1)

1
0

= 2
3

[0− sin(−1)] = − 2
3

sin(−1) = 2
3

sin 1
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68. Express D as a union of regions of type I or type II and evaluate the integral
∫∫

D
y dA.

 SECTION 15.2  Double Integrals over General Regions 1061

67–68 Express D as a union of regions of type I or type II and 
evaluate the integral.

 67. y
D

y x 2 dA 68. y
D

y y dA

0

1

_1

_1 1

D
(1, 1)

x

y

      

0

_1

1

_1

x=y-Á

y=(x+1)@

y

x

69–70 Use Property 10 to estimate the value of the integral.

 69.  y
S

y s4 2 x 2 y 2  dA,  

  S − hsx, yd | x 2 1 y 2 < 1, x > 0j

 70.  y
T

y sin4sx 1 yd dA,  T is the triangle enclosed by the lines 

  y − 0, y − 2x, and x − 1

71–72 Find the average value of f  over the region D.

 71.  f sx, yd − xy,   
D is the triangle with vertices s0, 0d, s1, 0d, and s1, 3d

 72.  f sx, yd − x sin y,   
D is enclosed by the curves y − 0, y − x 2, and x − 1

 73. Prove Property 10.

 74.  In evaluating a double integral over a region D, a sum of  
iterated integrals was obtained as follows:

y
D

y f sx, yd dA − y1

0
 y2y

0
 f sx, yd dx dy 1 y3

1
 y32y

0
 f sx, yd dx dy

Sketch the region D and express the double integral as an  
iterated integral with reversed order of integration.

75–79 Use geometry or symmetry, or both, to evaluate the  
double integral.

 75.  y
D

y sx 1 2d dA,  

  D − hsx, yd  |  0 < y < s9 2 x 2
 j

 76.  y
D

y sR 2 2 x 2 2 y 2  dA,  

  D is the disk with center the origin and radius R

 45.  The solid under the plane z − 3, above the plane z − y, and 
between the parabolic cylinders y − x 2 and y − 1 2 x 2

 46.  The solid in the first octant under the plane z − x 1 y, 
above the surface z − xy, and enclosed by the surfaces 
x − 0, y − 0, and x 2 1 y 2 − 4

47–50 Sketch the solid whose volume is given by the iterated  
integral.

 47. y1

0
 y12x

0
 s1 2 x 2 yd dy dx 48. y1

0
 y12x2

0
 s1 2 xd dy dx

 49. y3

0
 yy

0
  s 9 2 x 2

  dx dy  50. y2

22
 y32x2

21
 e2y dy dx 

51–54 Use a computer algebra system to find the exact volume 
of the solid.

 51.  Under the surface z − x 3y 4 1 xy 2 and above the region 
bounded by the curves y − x 3 2 x and y − x 2 1 x  
for x > 0

 52.  Between the paraboloids z − 2x 2 1 y 2 and 
z − 8 2 x 2 2 2y 2 and inside the cylinder x 2 1 y 2 − 1

 53. Enclosed by z − 1 2 x 2 2 y 2 and z − 0

 54. Enclosed by z − x 2 1 y 2 and z − 2y

55–60 Sketch the region of integration and change the order of 
integration.

 55. y1

0
 yy

0
 f sx, yd dx dy 56. y2

0
 y4

x2
 f sx, yd dy dx

 57. y�y2

0
 y1

sin x
  f sx, yd dy dx 58. y2

22
 ys42y2

 

0
 f sx, yd dx dy

 59. y2

1
 y ln

 
x

0
 f sx, yd dy dx 60. y1

0
 y�y4

arctan x
 f sx, yd dy dx

61–66 Evaluate the integral by reversing the order of 
integration.

 61. y1

0
 y3

3y
 e x2

 dx dy 62. y1

0
y1

x2
 sy  sin y dy dx

 63. y1

0
y1

sx 
 sy 3 1 1

 

 dy dx

 64. y2

0
y1

yy2
 y cossx 3 2 1d dx dy

 65. y1

0
 y�y2

arcsin y
 cos x s1 1 cos2x  dx dy

 66. y8

0
 y2

s3 y 
 e x 4

 dx dy
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Solution:
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64.
 2

0

 1

2

 cos(3 − 1) =
 1

0

 2

0

 cos(3 − 1)  

=

 1

0

cos(3 − 1)  1
2

2=2
=0



=

 1

0

22 cos(3 − 1)  = 2
3 sin(

3 − 1)1
0

= 2
3
[0− sin(−1)] = − 2

3
sin(−1) = 2

3
sin 1

65.
 1

0

 2

arcsin 

cos

1 + cos2 

=
 2
0

 sin
0

cos
√
1 + cos2  

=
 2
0

cos
√
1 + cos2 



=sin
=0



=
 2
0

cos
√
1 + cos2  sin


Let  = cos,  = − sin ,

 = (− sin)


=
 0
1
−√1 + 2  = − 1

3


1 + 2

320
1

= 1
3

√
8− 1 = 1

3


2
√
2− 1

66.  8

0

 2

3√

4

 =

 2

0

 3

0


4

 

=

 2

0


4


=3
=0

 =

 2

0


3

4



= 1
4


4
2
0
= 1

4
(16 − 1)

67.  = {( ) | 0 ≤  ≤ 1, −+ 1 ≤  ≤ 1} ∪ {( ) | −1 ≤  ≤ 0, + 1 ≤  ≤ 1}
∪ {( ) | 0 ≤  ≤ 1, − 1 ≤  ≤ − 1} ∪ {( ) | −1 ≤  ≤ 0, − 1 ≤  ≤ −− 1}, all type I.





2
=

 1

0

 1

1−


2
 +

 0

−1

 1

+1


2
 +

 1

0

 − 1

−1

2
 +

 0

−1

 −− 1

−1

2
 

= 4

 1

0

 1

1−


2
  [by symmetry of the regions and because ( ) = 

2 ≥ 0]

= 4
 1
0
3  = 4


1
4
4
1
0
= 1

68.  =

( ) | −1 ≤  ≤ 0, −1 ≤  ≤  − 3

 ∪ ( ) | 0 ≤  ≤ 1,√ − 1 ≤  ≤  − 3

, both type II.



 =

 0

−1

 −3

−1
  +

 1

0

 −3

√
−1

  =

 0

−1



= −3
=−1  +

 1

0



=−3
=
√
−1 

=
 0
−1(

2 − 4 + )  +
 1
0
(2 − 4 − 32 + ) 

=

1
3
3 − 1

5
5 + 1

2
2
0
−1 +


1
3
3 − 1

5
5 − 2

5
52 + 1

2
2
1
0

= (0− 11
30
) + ( 7

30
− 0) = − 2
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