Section 14.8 Lagrange Multipliers

7. Each of these extreme value problems has a solution with both a maximum value and a minimum value. Use Lagrange multipliers to find the extreme values of the function subject to the given constraint.

$$
f(x, y)=2 x^{2}+6 y^{2}, \quad x^{4}+3 y^{4}=1
$$

Solution:

$f(x, y)=2 x^{2}+6 y^{2}, g(x, y)=x^{4}+3 y^{4}=1$, and $\nabla f=\lambda \nabla g \quad \Rightarrow \quad\langle 4 x, 12 y\rangle=\left\langle 4 \lambda x^{3}, 12 \lambda y^{3}\right\rangle$, so we get the three equations $4 x=4 \lambda x^{3}, 12 y=12 \lambda y^{3}$, and $x^{4}+3 y^{4}=1$. The first equation implies that $x=0$ or $x^{2}=\frac{1}{\lambda}$. The second equation implies that $y=0$ or $y^{2}=\frac{1}{\lambda}$. Note that x and y cannot both be zero as this contradicts the third equation. If $x=0$, the third equation implies $y= \pm \frac{1}{\sqrt[4]{3}}$. If $y=0$, the third equation implies that $x= \pm 1$. Thus, f has possible extreme values at $\left(0, \pm \frac{1}{\sqrt[4]{3}}\right)$ and $(\pm 1,0)$. Next, suppose $x^{2}=y^{2}=\frac{1}{\lambda}$. Then the third equation gives $\left(\frac{1}{\lambda}\right)^{2}+3\left(\frac{1}{\lambda}\right)^{2}=1 \Rightarrow \lambda= \pm 2$. $\lambda=-2$ results in a nonreal solution, so consider $\lambda=2 \Rightarrow x=y= \pm \frac{1}{\sqrt{2}}$. Therefore, f also has possible extreme values at $\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right)$ (all 4 combinations). Substituting all 8 points into f, we find the maximum value is $f\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right)=4$ and the minimum value is $f(\pm 1,0)=2$.
10. Each of these extreme value problems has a solution with both a maximum value and a minimum value. Use Lagrange multipliers to find the extreme values of the function subject to the given constraint.

$$
f(x, y, z)=e^{x y z} ; \quad 2 x^{2}+y^{2}+z^{2}=24
$$

Solution:

$f(x, y, z)=e^{x y z}, g(x, y, z)=2 x^{2}+y^{2}+z^{2}=24$, and $\nabla f=\lambda \nabla g \quad \Rightarrow \quad\left\langle y z e^{x y z}, x z e^{x y z}, x y e^{x y z}\right\rangle=\langle 4 \lambda x, 2 \lambda y, 2 \lambda z\rangle$. Then $y z e^{x y z}=4 \lambda x, x z e^{x y z}=2 \lambda y, x y e^{x y z}=2 \lambda z$, and $2 x^{2}+y^{2}+z^{2}=24$. If any of x, y, z, or λ is zero, then the first three equations imply that two of the variables x, y, z must be zero. If $x=y=z=0$ it contradicts the fourth equation, so exactly two are zero, and from the fourth equation the possibilities are $(\pm 2 \sqrt{3}, 0,0),(0, \pm 2 \sqrt{6}, 0),(0,0, \pm 2 \sqrt{6})$, all with an f-value of $e^{0}=1$. If none of x, y, z, λ is zero then from the first three equations we have $\frac{4 \lambda x}{y z}=e^{x y z}=\frac{2 \lambda y}{x z}=\frac{2 \lambda z}{x y} \Rightarrow \frac{2 x}{y z}=\frac{y}{x z}=\frac{z}{x y}$. This gives $2 x^{2} z=y^{2} z \quad \Rightarrow \quad 2 x^{2}=y^{2} \quad$ and $x y^{2}=x z^{2} \Rightarrow$ $y^{2}=z^{2}$. Substituting into the fourth equation, we have $y^{2}+y^{2}+y^{2}=24 \Rightarrow y^{2}=8 \Rightarrow y= \pm 2 \sqrt{2}$, so $x^{2}=4 \Rightarrow x= \pm 2$ and $z^{2}=y^{2} \quad \Rightarrow \quad z= \pm 2 \sqrt{2}$, giving possible points $(\pm 2, \pm 2 \sqrt{2}, \pm 2 \sqrt{2})$ (all combinations). The value of f is e^{16} when all coordinates are positive or exactly two are negative, and the value is e^{-16} when all are negative or exactly one of the coordinates is negative. Thus the maximum of f subject to the constraint is e^{16} and the minimum is e^{-16}.
28. Find the extreme values of f on the region described by the inequality.

$$
f(x, y)=2 x^{2}+3 y^{2}-4 x-5, \quad x^{2}+y^{2} \leq 16
$$

Solution:

$f(x, y)=2 x^{2}+3 y^{2}-4 x-5 \Rightarrow \nabla f=\langle 4 x-4,6 y\rangle=\langle 0,0\rangle \quad \Rightarrow \quad x=1, y=0$. Thus $(1,0)$ is the only critical point of f, and it lies in the region $x^{2}+y^{2}<16$. On the boundary, $g(x, y)=x^{2}+y^{2}=16 \quad \Rightarrow \quad \lambda \nabla g=\langle 2 \lambda x, 2 \lambda y\rangle$, so $6 y=2 \lambda y \quad \Rightarrow \quad$ either $y=0$ or $\lambda=3$. If $y=0$, then $x= \pm 4$; if $\lambda=3$, then $4 x-4=2 \lambda x \quad \Rightarrow \quad x=-2$ and $y= \pm 2 \sqrt{3}$. Now $f(1,0)=-7, f(4,0)=11, f(-4,0)=43$, and $f(-2, \pm 2 \sqrt{3})=47$. Thus the maximum value of $f(x, y)$ on the disk $x^{2}+y^{2} \leq 16$ is $f(-2, \pm 2 \sqrt{3})=47$, and the minimum value is $f(1,0)=-7$.
57. The plane $x+y+2 z=2$ intersects the paraboloid $z=x^{2}+y^{2}$ in an ellipse. Find the points on this ellipse that are nearest to and farthest from the origin.

Solution:

We need to find the extreme values of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the two constraints $g(x, y, z)=x+y+2 z=2$ and $h(x, y, z)=x^{2}+y^{2}-z=0 . \quad \nabla f=\langle 2 x, 2 y, 2 z\rangle, \lambda \nabla g=\langle\lambda, \lambda, 2 \lambda\rangle$ and $\mu \nabla h=\langle 2 \mu x, 2 \mu y,-\mu\rangle$. Thus we need
$2 x=\lambda+2 \mu x$ (1), $\quad 2 y=\lambda+2 \mu y$ (2), $\quad 2 z=2 \lambda-\mu$ (3), $\quad x+y+2 z=2$ (4), and $x^{2}+y^{2}-z=0$ (5).
From (1) and (2), $2(x-y)=2 \mu(x-y)$, so if $x \neq y, \mu=1$. Putting this in (3) gives $2 z=2 \lambda-1$ or $\lambda=z+\frac{1}{2}$, but putting $\mu=1$ into (1) says $\lambda=0$. Hence $z+\frac{1}{2}=0$ or $z=-\frac{1}{2}$. Then (4) and (5) become $x+y-3=0$ and $x^{2}+y^{2}+\frac{1}{2}=0$. The last equation cannot be true, so this case gives no solution. So we must have $x=y$. Then (4) and (5) become $2 x+2 z=2$ and $2 x^{2}-z=0$ which imply $z=1-x$ and $z=2 x^{2}$. Thus $2 x^{2}=1-x$ or $2 x^{2}+x-1=(2 x-1)(x+1)=0$ so $x=\frac{1}{2}$ or $x=-1$. The two points to check are $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and $(-1,-1,2): f\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=\frac{3}{4}$ and $f(-1,-1,2)=6$. Thus $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ is the point on the ellipse nearest the origin and $(-1,-1,2)$ is the one farthest from the origin.
58. The plane $4 x-3 y+8 z=5$ intersects the cone $z^{2}=x^{2}+y^{2}$ in an ellipse.
(b) Use Lagrange multipliers to find the highest and lowest points on the ellipse.

Solution:

(b) We need to find the extreme values of $f(x, y, z)=z$ subject to the two
constraints $g(x, y, z)=4 x-3 y+8 z=5$ and $h(x, y, z)=x^{2}+y^{2}-z^{2}=0$.
$\nabla f=\lambda \nabla g+\mu \nabla h \quad \Rightarrow \quad\langle 0,0,1\rangle=\lambda\langle 4,-3,8\rangle+\mu\langle 2 x, 2 y,-2 z\rangle$, so we need $4 \lambda+2 \mu x=0 \quad \Rightarrow \quad x=-\frac{2 \lambda}{\mu}$ (1),
$-3 \lambda+2 \mu y=0 \Rightarrow y=\frac{3 \lambda}{2 \mu}$ (2), $\quad 8 \lambda-2 \mu z=1 \Rightarrow z=\frac{8 \lambda-1}{2 \mu}$ (3), $\quad 4 x-3 y+8 z=5$ (4), and
$x^{2}+y^{2}=z^{2}$ (5). [Note that $\mu \neq 0$, else $\lambda=0$ from (1), but substitution into (3) gives a contradiction.]
Substituting (1), (2), and (3) into (4) gives $4\left(-\frac{2 \lambda}{\mu}\right)-3\left(\frac{3 \lambda}{2 \mu}\right)+8\left(\frac{8 \lambda-1}{2 \mu}\right)=5 \Rightarrow \mu=\frac{39 \lambda-8}{10}$ and into (5) gives $\left(-\frac{2 \lambda}{\mu}\right)^{2}+\left(\frac{3 \lambda}{2 \mu}\right)^{2}=\left(\frac{8 \lambda-1}{2 \mu}\right)^{2} \Rightarrow 16 \lambda^{2}+9 \lambda^{2}=(8 \lambda-1)^{2} \Rightarrow 39 \lambda^{2}-16 \lambda+1=0 \quad \Rightarrow \quad \lambda=\frac{1}{13}$ or $\lambda=\frac{1}{3}$. If $\lambda=\frac{1}{13}$ then $\mu=-\frac{1}{2}$ and $x=\frac{4}{13}, y=-\frac{3}{13}, z=\frac{5}{13}$. If $\lambda=\frac{1}{3}$ then $\mu=\frac{1}{2}$ and $x=-\frac{4}{3}, y=1, z=\frac{5}{3}$. Thus, the highest point on the ellipse is $\left(-\frac{4}{3}, 1, \frac{5}{3}\right)$ and the lowest point is $\left(\frac{4}{13},-\frac{3}{13}, \frac{5}{13}\right)$.

