Section 14.7 Maximum and Minimum Values

20. Find the local maximum and minimum values and saddle point(s) of the function. You are encouraged to use a calculator or computer to graph the function with a domain and viewpoint that reveals all the important aspects of the function.

$$
f(x, y)=\left(x^{2}+y^{2}\right) e^{-x}
$$

Solution:

$f(x, y)=\left(x^{2}+y^{2}\right) e^{-x} \Rightarrow f_{x}=\left(x^{2}+y^{2}\right)\left(-e^{-x}\right)+e^{-x}(2 x)=\left(2 x-x^{2}-y^{2}\right) e^{-x}, \quad f_{y}=2 y e^{-x}$,
$f_{x x}=\left(2 x-x^{2}-y^{2}\right)\left(-e^{-x}\right)+e^{-x}(2-2 x)=\left(x^{2}+y^{2}-4 x+2\right) e^{-x}, f_{x y}=-2 y e^{-x}, f_{y y}=2 e^{-x}$. Then $f_{y}=0$
implies $y=0$ and substituting into $f_{x}=0$ gives $\left(2 x-x^{2}\right) e^{-x}=0 \quad \Rightarrow$ $x(2-x)=0 \Rightarrow x=0$ or $x=2$, so the critical points are $(0,0)$ and $(2,0) . \quad D(0,0)=(2)(2)-(0)^{2}=4>0$ and $f_{x x}(0,0)=2>0$, so $f(0,0)=0$ is a local minimum.
$D(2,0)=\left(-2 e^{-2}\right)\left(2 e^{-2}\right)-(0)^{2}=-4 e^{-4}<0$ so $(2,0)$ is a saddle point.

21. Find the local maximum and minimum values and saddle point(s) of the function. If you have three-dimensional graphing software, graph the function with a domain and viewpoint that reveal all the important aspects of the function.

$$
f(x, y)=y^{2}-2 y \cos x, \quad-1 \leq x \leq 7
$$

Solution:

$f(x, y)=y^{2}-2 y \cos x \quad \Rightarrow \quad f_{x}=2 y \sin x, f_{y}=2 y-2 \cos x$,
$f_{x x}=2 y \cos x, f_{x y}=2 \sin x, f_{y y}=2$. Then $f_{x}=0$ implies $y=0$ or $\sin x=0 \quad \Rightarrow \quad x=0, \pi$, or 2π for $-1 \leq x \leq 7$. Substituting $y=0$ into $f_{y}=0$ gives $\cos x=0 \Rightarrow x=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$, substituting $x=0$ or $x=2 \pi$ into $f_{y}=0$ gives $y=1$, and substituting $x=\pi$ into $f_{y}=0$ gives $y=-1$.

Thus the critical points are $(0,1),\left(\frac{\pi}{2}, 0\right),(\pi,-1),\left(\frac{3 \pi}{2}, 0\right)$, and $(2 \pi, 1)$.
$D\left(\frac{\pi}{2}, 0\right)=D\left(\frac{3 \pi}{2}, 0\right)=-4<0$ so $\left(\frac{\pi}{2}, 0\right)$ and $\left(\frac{3 \pi}{2}, 0\right)$ are saddle points. $D(0,1)=D(\pi,-1)=D(2 \pi, 1)=4>0$ and $f_{x x}(0,1)=f_{x x}(\pi,-1)=f_{x x}(2 \pi, 1)=2>0$, so $f(0,1)=f(\pi,-1)=f(2 \pi, 1)=-1$ are local minima.
39. Find the absolute maximum and minimum values of f on the set D.

$$
f(x, y)=2 x^{3}+y^{4}, \quad D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}
$$

Solution:

$f(x, y)=2 x^{3}+y^{4} \Rightarrow f_{x}(x, y)=6 x^{2}$ and $f_{y}(x, y)=4 y^{3}$. And so $f_{x}=0$ and $f_{y}=0$ only occur when $x=y=0$.
Hence, the only critical point inside the disk is at $x=y=0$ where $f(0,0)=0$. Now on the circle $x^{2}+y^{2}=1, y^{2}=1-x^{2}$
so let $g(x)=f(x, y)=2 x^{3}+\left(1-x^{2}\right)^{2}=x^{4}+2 x^{3}-2 x^{2}+1,-1 \leq x \leq 1$. Then $g^{\prime}(x)=4 x^{3}+6 x^{2}-4 x=0 \quad \Rightarrow$ $x=0,-2$, or $\frac{1}{2} . f(0, \pm 1)=g(0)=1, f\left(\frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right)=g\left(\frac{1}{2}\right)=\frac{13}{16}$, and $(-2,-3)$ is not in D. Checking the endpoints, we get $f(-1,0)=g(-1)=-2$ and $f(1,0)=g(1)=2$. Thus the absolute maximum and minimum of f on D are $f(1,0)=2$ and $f(-1,0)=-2$.

Another method: On the boundary $x^{2}+y^{2}=1$ we can write $x=\cos \theta, y=\sin \theta$, so $f(\cos \theta, \sin \theta)=2 \cos ^{3} \theta+\sin ^{4} \theta$, $0 \leq \theta \leq 2 \pi$.
55. A cardboard box without a lid is to have a volume of $32,000 \mathrm{~cm}^{3}$. Find the dimensions that minimize the amount of cardboard used.

Solution:

Let the dimensions be x, y and z, then minimize $x y+2(x z+y z)$ if $x y z=32,000 \mathrm{~cm}^{3}$. Then
$f(x, y)=x y+[64,000(x+y) / x y]=x y+64,000\left(x^{-1}+y^{-1}\right), f_{x}=y-64,000 x^{-2}, f_{y}=x-64,000 y^{-2}$.
And $f_{x}=0$ implies $y=64,000 / x^{2}$; substituting into $f_{y}=0$ implies $x^{3}=64,000$ or $x=40$ and then $y=40$. Now $D(x, y)=[(2)(64,000)]^{2} x^{-3} y^{-3}-1>0$ for $(40,40)$ and $f_{x x}(40,40)>0$ so this is indeed a minimum. Thus the dimensions of the box are $x=y=40 \mathrm{~cm}, z=20 \mathrm{~cm}$.
61. Method of Least Squares Suppose that a scientist has reason to believe that two quantities x and y are related linearly, that is, $y=m x+b$, at least approximately, for some values of m and b. The scientist performs an experiment and collects data in the form of points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$, and then plots these points. The points don't lie exactly on a straight line, so the scientist wants to find constants m and b so that the line $y=m x+b$ "fits" the points as well as possible (see the figure).

Let $d_{i}=y_{i}-\left(m x_{i}+b\right)$ be the vertical deviation of the point $\left(x_{i}, y_{i}\right)$ from the line. The method of least squares determines m and b so as to minimize $\sum_{i=1}^{n} d_{i}^{2}$, the sum of the squares of these deviations. Show that, according to this method, the line of best fit is obtained when

$$
m \sum_{i=1}^{n} x_{i}+b_{n}=\sum_{i=1}^{n} y_{i} \text { and } m \sum_{i=1}^{n} x_{i}^{2}+b \sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} x_{i} y_{i}
$$

Thus the line is found by solving these two equations in the two unknowns m and b. (See Section 1.2 for a further discussion and applications of the method of least squares.) Solution:
Note that here the variables are m and b, and $f(m, b)=\sum_{i=1}^{n}\left[y_{i}-\left(m x_{i}+b\right)\right]^{2}$. Then $f_{m}=\sum_{i=1}^{n}-2 x_{i}\left[y_{i}-\left(m x_{i}+b\right)\right]=0$ implies $\sum_{i=1}^{n}\left(x_{i} y_{i}-m x_{i}^{2}-b x_{i}\right)=0$ or $\sum_{i=1}^{n} x_{i} y_{i}=m \sum_{i=1}^{n} x_{i}^{2}+b \sum_{i=1}^{n} x_{i}$ and $f_{b}=\sum_{i=1}^{n}-2\left[y_{i}-\left(m x_{i}+b\right)\right]=0$ implies $\sum_{i=1}^{n} y_{i}=m \sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} b=m\left(\sum_{i=1}^{n} x_{i}\right)+n b$. Thus, we have the two desired equations.

Now $f_{m m}=\sum_{i=1}^{n} 2 x_{i}^{2}, f_{b b}=\sum_{i=1}^{n} 2=2 n$ and $f_{m b}=\sum_{i=1}^{n} 2 x_{i}$. And $f_{m m}(m, b)>0$ always and $D(m, b)=4 n\left(\sum_{i=1}^{n} x_{i}^{2}\right)-4\left(\sum_{i=1}^{n} x_{i}\right)^{2}=4\left[n\left(\sum_{i=1}^{n} x_{i}^{2}\right)-\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right]>0$ always so the solutions of these two equations do indeed minimize $\sum_{i=1}^{n} d_{i}^{2}$.

