Section 14.4 Tangent Planes and Linear Approximation

9. Find an equation of the tangent plane to the given surface at the specified point. $z=x \sin (x+y),(-1,1,0)$

Solution:

$z=f(x, y)=x \sin (x+y) \quad \Rightarrow \quad f_{x}(x, y)=x \cdot \cos (x+y) \cdot 1+\sin (x+y) \cdot 1=x \cos (x+y)+\sin (x+y)$ and $f_{y}(x, y)=x \cos (x+y) \cdot 1$, so $f_{x}(-1,1)=(-1) \cos 0+\sin 0=-1, \quad f_{y}(-1,1)=(-1) \cos 0=-1$. Thus, an equation of the tangent plane is $z-0=f_{x}(-1,1)(x-(-1))+f_{y}(-1,1)(y-1) \Rightarrow z=(-1)(x+1)+(-1)(y-1)$, or $x+y+z=0$.
20. Explain why the function is differentiable at the given point. Then find the linearization $L(x, y)$, yd of the function at that point.

$$
\begin{equation*}
f(x, y)=\frac{1+y}{1+x} \tag{1,3}
\end{equation*}
$$

Solution:

$f(x, y)=\frac{1+y}{1+x}=(1+y)(1+x)^{-1} . \quad$ The partial derivatives are $f_{x}(x, y)=(1+y)(-1)(1+x)^{-2}=-\frac{1+y}{(1+x)^{2}}$ and $f_{y}(x, y)=(1)(1+x)^{-1}=\frac{1}{1+x}$, so $f_{x}(1,3)=-1$ and $f_{y}(1,3)=\frac{1}{2}$. Both f_{x} and f_{y} are continuous functions for $x \neq-1$, so f is differentiable at $(1,3)$ by Theorem 8 . The linearization of f at $(1,3)$ is
$L(x, y)=f(1,3)+f_{x}(1,3)(x-1)+f_{y}(1,3)(y-3)=2+(-1)(x-1)+\frac{1}{2}(y-3)=-x+\frac{1}{2} y+\frac{3}{2}$.
24. Verify the linear approximation at $(0,0) \cdot \frac{y-1}{x+1} \approx x+y-1$

Solution:

Let $f(x, y)=\frac{y-1}{x+1}$. Then $f_{x}(x, y)=(y-1)(-1)(x+1)^{-2}=\frac{1-y}{(x+1)^{2}}$ and $f_{y}(x, y)=\frac{1}{x+1}$. Both f_{x} and f_{y} are continuous functions for $x \neq-1$, so by Theorem $8, f$ is differentiable at $(0,0)$. We have $f_{x}(0,0)=1, f_{y}(0,0)=1$ and the linear approximation of f at $(0,0)$ is $f(x, y) \approx f(0,0)+f_{x}(0,0)(x-0)+f_{y}(0,0)(y-0)=-1+1 x+1 y=x+y-1$.
52. Suppose you need to know an equation of the tangent plane to a surface S at the point $P(2,1,3)$. You don't have an equation for S but you know that the curves

$$
\begin{aligned}
& \mathbf{r}_{1}(\mathrm{t})=<2+3 t, 1-t^{2}, 3-4 t+t^{2}> \\
& \mathbf{r}_{2}(\mathrm{u})=<1+u^{2}, 2 u^{3}-1,2 u+1>
\end{aligned}
$$

both lie on S. Find an equation of the tangent plane at P.

Solution:

$\mathbf{r}_{1}(t)=\left\langle 2+3 t, 1-t^{2}, 3-4 t+t^{2}\right\rangle \quad \Rightarrow \quad \mathbf{r}_{1}^{\prime}(t)=\langle 3,-2 t,-4+2 t\rangle, \quad \mathbf{r}_{2}(u)=\left\langle 1+u^{2}, 2 u^{3}-1,2 u+1\right\rangle \quad \Rightarrow$
$\mathbf{r}_{2}^{\prime}(u)=\left\langle 2 u, 6 u^{2}, 2\right\rangle$. Both curves pass through P since $\mathbf{r}_{1}(0)=\mathbf{r}_{2}(1)=\langle 2,1,3\rangle$, so the tangent vectors $\mathbf{r}_{1}^{\prime}(0)=\langle 3,0,-4\rangle$ and $\mathbf{r}_{2}^{\prime}(1)=\langle 2,6,2\rangle$ are both parallel to the tangent plane to S at P. A normal vector for the tangent plane is
$\mathbf{r}_{1}^{\prime}(0) \times \mathbf{r}_{2}^{\prime}(1)=\langle 3,0,-4\rangle \times\langle 2,6,2\rangle=\langle 24,-14,18\rangle$, so an equation of the tangent plane is
$24(x-2)-14(y-1)+18(z-3)=0$ or $12 x-7 y+9 z=44$.
54. (a) The function

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

was graphed in Figure 4. Show that $f_{x}(0,0)$ and $f_{y}(0,0)$ both exist but f is not differentiable at $(0,0)$. [Hint: Use the result of Exercise 53.]
(b) Explain why f_{x} and f_{y} are not continuous at $(0,0)$.

Solution:

(a) $\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0$ and $\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0$. Thus $f_{x}(0,0)=f_{y}(0,0)=0$.

To show that f isn't differentiable at $(0,0)$ we need only show that f is not continuous at $(0,0)$ and apply Exercise 45 . As $(x, y) \rightarrow(0,0)$ along the x-axis $f(x, y)=0 / x^{2}=0$ for $x \neq 0$ so $f(x, y) \rightarrow 0$ as $(x, y) \rightarrow(0,0)$ along the x-axis. But as $(x, y) \rightarrow(0,0)$ along the line $y=x, f(x, x)=x^{2} /\left(2 x^{2}\right)=\frac{1}{2}$ for $x \neq 0$ so $f(x, y) \rightarrow \frac{1}{2}$ as $(x, y) \rightarrow(0,0)$ along this line. Thus $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ doesn't exist, so f is discontinuous at $(0,0)$ and thus not differentiable there.
(b) For $(x, y) \neq(0,0), f_{x}(x, y)=\frac{\left(x^{2}+y^{2}\right) y-x y(2 x)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}$. If we approach $(0,0)$ along the y-axis, then $f_{x}(x, y)=f_{x}(0, y)=\frac{y^{3}}{y^{4}}=\frac{1}{y}$, so $f_{x}(x, y) \rightarrow \pm \infty$ as $(x, y) \rightarrow(0,0)$. Thus $\lim _{(x, y) \rightarrow(0,0)} f_{x}(x, y)$ does not exist and $f_{x}(x, y)$ is not continuous at $(0,0)$. Similarly, $f_{y}(x, y)=\frac{\left(x^{2}+y^{2}\right) x-x y(2 y)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}$ for $(x, y) \neq(0,0)$, and if we approach $(0,0)$ along the x-axis, then $f_{y}(x, y)=f_{x}(x, 0)=\frac{x^{3}}{x^{4}}=\frac{1}{x}$. Thus $\lim _{(x, y) \rightarrow(0,0)} f_{y}(x, y)$ does not exist and $f_{y}(x, y)$ is not continuous at $(0,0)$.

