Section 14.2 Limits and Continuity

17. Show that the limit does not exist. $\lim_{(x,y)\to(0,0)}\frac{y^2\sin^2 x}{x^4+y^4}.$

Solution:

 $f(x,y) = \frac{y^2 \sin^2 x}{x^4 + y^4}$. First approach (0,0) along the y-axis. Then $f(0,y) = 0/y^4 = 0$ for $y \neq 0$, so $f(x,y) \to 0$. Now

approach (0,0) along the line y = x. Then $f(x,x) = \frac{x^2 \sin^2 x}{2x^4} = \frac{1}{2} \left(\frac{\sin x}{x}\right)^2$ for $x \neq 0$, so by Equation 3.3.5,

 $f(x,y) \rightarrow \frac{1}{2}(1)^2 = \frac{1}{2}$. Since f has two different limits along two different lines, the limit does not exist.

23. Find the limit, if it exists, or show that the limit does not exist. $\lim_{(x,y)\to(0,0)} \frac{xy^2\cos y}{x^2+y^4}.$

Solution:

Let $f(x,y) = \frac{xy^2 \cos y}{x^2 + y^4}$. Then f(x,0) = 0 for $x \neq 0$, so $f(x,y) \to 0$ as $(x,y) \to (0,0)$ along the x-axis. Approaching

(0,0) along the y-axis or the line y = x also gives a limit of 0. But $f(y^2, y) = \frac{y^2 y^2 \cos y}{(y^2)^2 + y^4} = \frac{y^4 \cos y}{2y^4} = \frac{\cos y}{2}$ for $y \neq 0$, so $f(x, y) \rightarrow \frac{1}{2} \cos 0 = \frac{1}{2}$ as $(x, y) \rightarrow (0, 0)$ along the parabola $x = y^2$. Thus the limit doesn't exist.

33. Use the Squeeze Theorem to find the limit. $\lim_{(x,y)\to(0,0)} \frac{xy^4}{x^4+y^4}.$

Solution:

We use the Squeeze Theorem to show that $\lim_{(x,y)\to(0,0)} \frac{xy^4}{x^4+y^4} = 0$:

$$0 \leq \frac{|x| y^4}{x^4 + y^4} \leq |x| \text{ since } 0 \leq \frac{y^4}{x^4 + y^4} \leq 1, \text{ and } |x| \to 0 \text{ as } (x, y) \to (0, 0), \text{ so } \frac{|x| y^4}{x^4 + y^4} \to 0 \quad \Rightarrow \quad \frac{xy^4}{x^4 + y^4} \to 0$$
 as $(x, y) \to (0, 0)$.

52. Use polar coordinates to find the limit. [If (r, θ) are polar coordinates of the point (x, y) with $r \ge 0$, note that $r \to 0^+$ as $(x, y) \to (0, 0)$.]

$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \ln(x^2 + y^2)$$

Solution:

$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \ln(x^2 + y^2) = \lim_{r\to 0^+} r^2 \ln r^2 = \lim_{r\to 0^+} \frac{\ln r^2}{1/r^2} = \lim_{r\to 0^+} \frac{(1/r^2)(2r)}{-2/r^3} \quad [\text{using l'Hospital's Rule}]$$
$$= \lim_{r\to 0^+} (-r^2) = 0$$