Section 14.1 Functions of Several Variables

25. Sketch the graph of the function.

$$f(x, y) = 10 - 4x - 5y$$

Solution:

z = 10 - 4x - 5y or 4x + 5y + z = 10, a plane with intercepts 2.5, 2, and 10.

30. Sketch the graph of the function. $f(x, y) = \sqrt{4x^2 + y^2}$.

Solution:

 $z = \sqrt{4x^2 + y^2}$ so $4x^2 + y^2 = z^2$ and $z \ge 0$, the top half of an elliptic cone.

32. Match the function with its graph (labeled I–VI). Give reasons for your choices.

(a) $f(x,y) = \frac{1}{1+x^2+y^2}$ (b) $f(x,y) = \frac{1}{1+x^2y^2}$ (c) $f(x,y) = \ln(x^2+y^2)$ (d) $f(x,y) = \cos\sqrt{x^2+y^2}$ (e) f(x,y) = |xy| (f) $f(x,y) = \cos(xy)$

Solution:

- (a) $f(x,y) = \frac{1}{1+x^2+y^2}$. The trace in x = 0 is $z = \frac{1}{1+y^2}$, and the trace in y = 0 is $z = \frac{1}{1+x^2}$. The only possibility is graph III. Notice also that the level curves of f are $\frac{1}{1+x^2+y^2} = k \iff x^2+y^2 = \frac{1}{k}-1$, a family of circles for k < 1.
- (b) $f(x, y) = \frac{1}{1 + x^2 y^2}$. The trace in x = 0 is the horizontal line z = 1, and the trace in y = 0 is also z = 1. Both graphs I

and II have these traces; however, notice that here z > 0, so the graph is I.

- (c) $f(x, y) = \ln(x^2 + y^2)$. The trace in x = 0 is $z = \ln y^2$, and the trace in y = 0 is $z = \ln x^2$. The level curves of f are $\ln(x^2 + y^2) = k \iff x^2 + y^2 = e^k$, a family of circles. In addition, f is large negative when $x^2 + y^2$ is small, so this is graph IV.
- (d) $f(x, y) = \cos \sqrt{x^2 + y^2}$. The trace in x = 0 is $z = \cos \sqrt{y^2} = \cos |y| = \cos y$, and the trace in y = 0 is $z = \cos \sqrt{x^2} = \cos |x| = \cos x$. Notice also that the level curve f(x, y) = 0 is $\cos \sqrt{x^2 + y^2} = 0 \iff x^2 + y^2 = (\frac{\pi}{2} + n\pi)^2$, a family of circles, so this is graph V.
- (e) $f(x, y) = (x^2 y^2)^2$. The trace in x = 0 is $z = y^4$, and in y = 0 is $z = x^4$. Notice that the trace in z = 0 is $0 = (x^2 y^2)^2 \Rightarrow y = \pm x$, so it must be graph VI.
- (f) $f(x, y) = \cos(xy)$. The trace in x = 0 is $z = \cos 0 = 1$, and the trace in y = 0 is z = 1. As mentioned in part (b), these traces match both graphs I and II. Here z can be negative, so the graph is II. (Also notice that the trace in x = 1 is $z = \cos y$, and the trace in y = 1 is $z = \cos x$.)

54. Sketch both a contour map and a graph of the function and compare them. $f(x,y) = \sqrt{36 - 9x^2 - 4y^2}$.

The graph of f(x, y) is the surface $z = \sqrt{36 - 9x^2 - 4y^2}$, or equivalently the upper half of the ellipsoid $9x^2 + 4y^2 + z^2 = 36$. If we visualize lifting each ellipse $k = \sqrt{36 - 9x^2 - 4y^2}$ of the contour map to the plane z = k, we have horizontal traces that indicate the shape of the graph of f.