Section 14.1 Functions of Several Variables

25. Sketch the graph of the function.

$$
f(x, y)=10-4 x-5 y
$$

Solution:

$z=10-4 x-5 y$ or $4 x+5 y+z=10$, a plane with intercepts $2.5,2$, and 10 .

30. Sketch the graph of the function. $f(x, y)=\sqrt{4 x^{2}+y^{2}}$.

Solution:

$z=\sqrt{4 x^{2}+y^{2}}$ so $4 x^{2}+y^{2}=z^{2}$ and $z \geq 0$, the top
half of an elliptic cone.

32. Match the function with its graph (labeled I-VI). Give reasons for your choices.
(a) $f(x, y)=\frac{1}{1+x^{2}+y^{2}}$
(b) $f(x, y)=\frac{1}{1+x^{2} y^{2}}$
(c) $f(x, y)=\ln \left(x^{2}+y^{2}\right)$
(d) $f(x, y)=\cos \sqrt{x^{2}+y^{2}}$
(e) $f(x, y)=|x y|$
(f) $f(x, y)=\cos (x y)$

Solution:

(a) $f(x, y)=\frac{1}{1+x^{2}+y^{2}}$. The trace in $x=0$ is $z=\frac{1}{1+y^{2}}$, and the trace in $y=0$ is $z=\frac{1}{1+x^{2}}$. The only possibility is graph III. Notice also that the level curves of f are $\frac{1}{1+x^{2}+y^{2}}=k \quad \Leftrightarrow \quad x^{2}+y^{2}=\frac{1}{k}-1$, a family of circles for $k<1$.
(b) $f(x, y)=\frac{1}{1+x^{2} y^{2}}$. The trace in $x=0$ is the horizontal line $z=1$, and the trace in $y=0$ is also $z=1$. Both graphs I and II have these traces; however, notice that here $z>0$, so the graph is I.
(c) $f(x, y)=\ln \left(x^{2}+y^{2}\right)$. The trace in $x=0$ is $z=\ln y^{2}$, and the trace in $y=0$ is $z=\ln x^{2}$. The level curves of f are $\ln \left(x^{2}+y^{2}\right)=k \Leftrightarrow x^{2}+y^{2}=e^{k}$, a family of circles. In addition, f is large negative when $x^{2}+y^{2}$ is small, so this is graph IV.
(d) $f(x, y)=\cos \sqrt{x^{2}+y^{2}}$. The trace in $x=0$ is $z=\cos \sqrt{y^{2}}=\cos |y|=\cos y$, and the trace in $y=0$ is $z=\cos \sqrt{x^{2}}=\cos |x|=\cos x$. Notice also that the level curve $f(x, y)=0$ is $\cos \sqrt{x^{2}+y^{2}}=0 \Leftrightarrow$ $x^{2}+y^{2}=\left(\frac{\pi}{2}+n \pi\right)^{2}$, a family of circles, so this is graph V.
(e) $f(x, y)=\left(x^{2}-y^{2}\right)^{2}$. The trace in $x=0$ is $z=y^{4}$, and in $y=0$ is $z=x^{4}$. Notice that the trace in $z=0$ is $0=\left(x^{2}-y^{2}\right)^{2} \Rightarrow y= \pm x$, so it must be graph VI.
(f) $f(x, y)=\cos (x y)$. The trace in $x=0$ is $z=\cos 0=1$, and the trace in $y=0$ is $z=1$. As mentioned in part (b), these traces match both graphs I and II. Here z can be negative, so the graph is II. (Also notice that the trace in $x=1$ is $z=\cos y$, and the trace in $y=1$ is $z=\cos x$.)
54. Sketch both a contour map and a graph of the function and compare them. $f(x, y)=\sqrt{36-9 x^{2}-4 y^{2}}$.

Solution:

The contour map consists of the level curves $k=\sqrt{36-9 x^{2}-4 y^{2}} \Rightarrow$ $9 x^{2}+4 y^{2}=36-k^{2}, k \geq 0$, a family of ellipses with major axis the y-axis. (Or, if $k=6$, the origin.)

The graph of $f(x, y)$ is the surface $z=\sqrt{36-9 x^{2}-4 y^{2}}$, or equivalently the upper half of the ellipsoid $9 x^{2}+4 y^{2}+z^{2}=36$. If we visualize lifting each ellipse $k=\sqrt{36-9 x^{2}-4 y^{2}}$ of the contour map to the plane $z=k$, we have horizontal traces that indicate the shape of the graph of f.

