Section 12.6 Cylinders and Quadric Surfaces

26. Match the equation with its graph (labeled I-VIII). Give reasons for your choice. $-x^{2}+y^{2}-z^{2}=1$
27. Match the equation with its graph (labeled I-VIII). Give reasons for your choice. $y=x^{2}-z^{2}$
I

II

V

VI

IV

VII

VIII

Solution:

26. $-x^{2}+y^{2}-z^{2}=1$ is the equation of a hyperboloid of two sheets, with $a=b=c=1$. This surface does not intersect the $x z$-plane at all, so the axis of the hyperboloid is the y-axis. Hence, the correct graph is III.
27. $y=x^{2}-z^{2}$ is the equation of a hyperbolic paraboloid. The trace in the $x y$-plane is the parabola $y=x^{2}$. So the correct graph is V .
28. Reduce the equation to one of the standard forms, classify the surface, and sketch it. $x^{2}-y^{2}-z^{2}-4 x-2 z+3=0$.

Solution:

Completing squares in x and z gives $\left(x^{2}-4 x+4\right)-y^{2}-\left(z^{2}+2 z+1\right)+3=0+4-1 \Leftrightarrow$ $(x-2)^{2}-y^{2}-(z+1)^{2}=0$ or $(x-2)^{2}=y^{2}+(z+1)^{2}$, a circular cone with vertex $(2,0,-1)$ and axis the horizontal line $y=0, z=-1$.

48. Find an equation for the surface obtained by rotating the line $z=2 y$ about the z-axis.

Solution:

Rotating the line $z=2 y$ about the z-axis creates a (right) circular cone with vertex at the origin and axis the z-axis. Traces in $z=k(k \neq 0)$ are circles with center $(0,0, k)$ and radius $y=z / 2=k / 2$, so an equation for the trace is $x^{2}+y^{2}=(k / 2)^{2}, z=k$. Thus an equation for the surface is $x^{2}+y^{2}=(z / 2)^{2}$ or $4 x^{2}+4 y^{2}=z^{2}$.

50. Find an equation for the surface consisting of all points P for which the distance from P to the x-axis is twice the distance from P to the $y z$-plane. Identify the surface.

Solution:

Let $P=(x, y, z)$ be an arbitrary point whose distance from the x-axis is twice its distance from the $y z$-plane. The distance from P to the x-axis is $\sqrt{(x-x)^{2}+y^{2}+z^{2}}=\sqrt{y^{2}+z^{2}}$ and the distance from P to the $y z$-plane $(x=0)$ is $|x| / 1=|x|$. Thus $\sqrt{y^{2}+z^{2}}=2|x| \quad \Leftrightarrow \quad y^{2}+z^{2}=4 x^{2} \quad \Leftrightarrow \quad x^{2}=\left(y^{2} / 2^{2}\right)+\left(z^{2} / 2^{2}\right)$. So the surface is a right circular cone with vertex the origin and axis the x-axis.

